Apr
29
Thursday, May 19, 2011, 1:00 p.m., in Room BA 6183, 40 St. George Street PhD Candidate: Brendan Pass PhD Advisor: Robert McCann PhD Thesis Title: Structural results on optimal transportation plans (http://www.math.utoronto.ca/bpass/ut-thesis.pdf) PhD Thesis Abstract: In this thesis we prove several results on the structure of solutions to optimal transportation problems. The second chapter represents joint work with Robert McCann and Micah Warren; the main result is that, under a non-degeneracy condition on the cost function, the optimal is concentrated on a n-dimensional Lipschitz submanifold of the product space. As a consequence, we provide a simple, new proof that the optimal map satisfies a Jacobian equation almost everywhere. In the third chapter, we prove an analogous result for the multi-marginal optimal transportation problem; in this context, the dimension of the support of the solution depends on the signatures of a family of semi-Riemannian metrics on the product space. In the fourth chapter, we identify sufficient conditions under which the solution to the multi-marginal problem is concentrated on the graph of a function over one of the marginals. In the fifth chapter, we investigate the regularity of the optimal map when the dimensions of the two spaces fail to coincide. We prove that a regularity theory can be developed only for very special cost functions, in which case a quotient construction can be used to reduce the problem to an optimal transport problem between spaces of equal dimension. The final chapter applies the results of chapter 5 to the principal-agent problem in mathematical economics when the space of types and the space of products differ. When the dimension of the space of types exceeds the dimension of the space of products, we show if the problem can be formulated as a maximization over a convex set, a quotient procedure can reduce the problem to one where the two dimensions coincide. Analogous conditions are investigated when the dimension of the space of products exceeds that of the space of types.
no comment as of now