The Department would like to congratulate this year’s Putnam competition team.  Once again the Mathematics Department at the University of Toronto has placed in the top ten.  We share this honour with MIT, Harvard, CalTech, Stanford, Princeton, Duke, Maryland, Virginia and Waterloo (click here for full results)

This year’s team:

  • Victoria Krakovna (senior) — This is the fourth time she has participated in the competition and last year she won the Elisabeth Putnam prize for best result by a female student.
  • Alexander Remorov (sophomore) — This is the second time he has participated.
  • Konstantin Matveev (junior) — This is his third participation in the competition where he made the top 20 last year and the year before that.

From the official Putnam website: The competition began in 1938 and is designed to stimulate a healthful rivalry in mathematical studies in the colleges and universities of the United States and Canada.  The William Lowell Putnam Mathematical Competition is an annual contest for college students established in 1938 in memory of its namesake.  The Elizabeth Lowell Putnam Prize was established in 1992 to be “awarded periodically to a woman whose performance on the Competition has been deemed particularly meritorious”. Over the years many of the winners of the Putnam competition have become distinguished mathematicians. A number of them have received the Fields Medal and several have won the Nobel Prize in Physics.

When asked for advice for future students looking to write the competition participant Victoria Krakovna had the following to say: “I am in fourth year, so I’ve participated in the Putnam four times. I practiced a lot by doing old Putnam problems both at the Putnam sessions and on my own. The competition has two parts, each part is 3 hours with 6 problems, arranged approximately in order of difficulty. I usually try to solve the first 3-4 problems in each half of the contest, and don’t attempt the last two much. In general it’s better to concentrate on a few problems and make good progress, rather than make small progress on all six. It’s a good idea to look at all the problems, though, for example you might be able to solve #3 without solving #2. The best advice I can offer is to do a lot of practice of old Putnam problems, as much as you can.”

The department is proud of it’s team’s achievements in this years competition!

, ,