2018 Graduate Scholarship Recipients

Over the last few years, the generosity of faculty, alumni and friends of the Department have allowed us to create a number of significant scholarships to support graduate students. This year’s winners are listed below.

1) Ida Bulat Memorial Graduate Fellowship:

Lennart Döppenschmitt (student of Marco Gualtieri)

2) Vivekananda Graduate Scholarship for International students:

Debanjana Kundu (student of Kumar Murty)

3) Canadian Mathematical Society Graduate Scholarship:

Saied Sorkhou (student of Joe Repka)

4) Coxeter Graduate Scholarship:

Mateusz Olechnowicz (student of Jacob Tsimerman, Patrick Ingram)

5) International Graduate Student Scholarship:

Abhishek Oswal (student of Jacob Tsimerman)

6) Margaret Isobel Elliott Graduate Scholarship:

Keegan Da Silva Barbosa (student of Stevo Todorcevic)

7) Irving Kaplansky Scholarship:

Jamal Kawach (student of Stevo Todorcevic)

Congratulations to all!

2018 Award Winners

We will celebrate the significant contributions of this year’s award winners during our reception in the Math lounge on Wednesday, June 13 starting at 3:10 p.m. Graduation-Awards-Invitation-2018

F. V. Atkinson Teaching Award for Postdoctoral Fellows

  • Bhishan Jacelon (working with George Elliott)
  • Mihai Nica (working with Jeremy Quastel)

Daniel B. DeLury Teaching Assistant Awards

  • Anne Dranovski, student of Joel Kamnitzer
  • Jeffrey Im, student of George Elliott
  • Larissa Richards, student of Ilia Binder

Ida Bulat Teaching Awards for Graduate Students

  • Thaddeus Janisse, student of Joe Repka
  • Zackary Wolske, student of Henry Kim

We thank the faculty members, undergraduate students and course instructors who took the time to submit their nominations for the various awards.

The awards committee received positive comments about the work of our TAs and CIs.  We can take pride in their performance.

Congratulations to Anne, Jeffrey, Larissa, Thaddeus and Zackary!

Departmental PhD Thesis Exam – Julio Hernandez Bellon

Everyone is welcome to attend.  Refreshments will be served in the Math Lounge before the exam.

Wednesday, June 6, 2018
11:10 a.m.
BA6183

PhD Candidate:  Julio Hernandez Bellon
Supervisor:   Luis Seco
Thesis title: Correlation Model Risk and Non Gaussian Factor Models

***

Abstract:

Two problems are considered in this thesis. The first one is concerned with correlation model risk and the second one with non Gaussian factor modeling of asset returns.

One of the fundamental problems in the application of mathematical finance results in a real world setting, is the dependence of mathematical models on parameters (correlations) that are hard to observe in markets. The common term for this problem is model risk. The first part of this thesis aims to provide some building blocks in the estimation of the sensitivities of mathematical objects (prices) to correlation inputs. In high dimensions, computational complexities increase faster than exponentially, a typical approach to deal with this problem is to introduce a principal component approach for dimension reduction. We consider the price of portfolios of options and approximations obtained by modifying the eigenvalues of the covariance matrix, then proceed to
find analytical upper bounds of the magnitude of the difference between the price and the approximation, under
different assumptions. Monte Carlo simulations are then used to plot the difference between the price and the
approximation.

In the second part of this thesis the assumptions and estimation methods of four different factor models with
time varying parameters are discussed. These models are based on Sharpe’s single index model, the first one
assumes that residuals follow a Gaussian white noise process, while the other three approaches combine the
structure of a single factor model with time varying parameters, with dynamic volatility (GARCH) assumptions
on the model components. The four approaches are then used to estimate the time varying alphas and betas of
three different hedge fund strategies and results are compared.

A copy of the thesis can be found here:  Thesis_Julio_Hernandez_07_30

Departmental PhD Thesis Exam – Daniel Fusca

Everyone is welcome to attend.  Refreshments will be served in the Math Lounge before the exam.

Tuesday, June 12, 2018
11:10 a.m.
BA6183

PhD Candidate:  Boris Khesin
Supervisor:   Daniel Fusca
Thesis title:  A groupoid approach to geometric mechanics

***

Abstract:

In 1966 V. Arnold proved that the Euler equation for an incompressible fluid describes the geodesic flow for a right-invariant metric on the group of volume-preserving diffeomorphisms of the fluid’s domain. This remarkable observation led to numerous advances in the study of the Hamiltonian properties, instabilities, and topological features of fluid flows. However, Arnold’s approach does not apply to systems whose configuration spaces do not have a group structure. A particular example of such a system is that of a fluid with moving boundary. More generally, one can consider a system describing a rigid body moving in a fluid. Here the configurations of the fluid are identified with diffeomorphisms mapping a fixed reference domain to the exterior of the (moving) body. In general such diffeomorphisms cannot be composed, since the domain of one will not match the range of the other.

The systems we consider are numerous variations of a rigid body in an inviscid fluid. The different cases are specified by the properties of the fluid; the fluid may be compressible or incompressible, irrotational or not. By using groupoids we generalize Arnold’s diffeomorphism group framework for fluid flows to show that the well-known equations governing the motion of these various systems can be viewed as geodesic equations (or more generally, Newton’s equations) written on an appropriate configuration space.

We also show how constrained dynamical systems on larger algebroids are in many cases equivalent to dynamical systems on smaller algebroids, with the two systems being related by a generalized notion of Riemannian submersion. As an application, we show that incompressible fluid-body motion with the constraint that the fluid velocity is curl- and circulation-free is equivalent to solutions of Kirchhoff’s equations on the finite-dimensional algebroid $\mathfrak{se}(n)$.

In order to prove these results, we further develop the theory of Lagrangian mechanics on algebroids. Our approach is based on the use of vector bundle connections, which leads to new expressions for the canonical equations and structures on Lie algebroids and their duals.

The case of a compressible fluid is of particular interest by itself. It turns out that for a large class of potential functions $U$, the gradient solutions of the compressible fluid equations can be related to solutions of Schr\”{o}dinger-type equations via the $\emph{Madelung transform}$, which was first introduced in 1927. We prove that the Madelung transform not only maps one class of equations to the other, but it also preserves the Hamiltonian properties of both equations.

A copy of the thesis can be found here:  ut-thesis fusca

Departmental PhD Thesis Exam – John Enns

Everyone is welcome to attend.  Refreshments will be served in the Math Lounge before the exam.

Monday, May 28, 2018
11:10 a.m.
BA6183

PhD Candidate:  John Enns
Supervisor:   Florian Herzig
Thesis title: On mod p local-global compability for unramified GL3

***

Abstract:

Let $K$ be a $p$-adic field. Given a continuous Galois representation $\bar{\rho}: \mathrm{Gal}(\overline{K}/K)\rightarrow \mathrm{GL}_n(\overline{\mathbb{F}}_p)$, the mod $p$ Langlands program hopes to associate with it a smooth admissible $\overline{\mathbb{F}}_p$-representations $\Pi_p(\bar{\rho})$ of $\mathrm{GL}_n(K)$ in a natural way.  When $\bar{\rho}=\bar{r}|_{G_{F_w}}$ is the local $w$-part of a global automorphic Galois representation $\bar{r}:\mathrm{Gal}(\overline{F}/F)\rightarrow \mathrm{GL}_n(\overline{\mathbb{F}}_p)$, for some CM field $F/F^+$ and place $w|p$, it is possible to construct a candidate $H^0(\bar{r})$ for $\Pi_p(\bar{r}|_{G_{F_w}})$ using spaces of mod $p$ automorphic forms on definite unitary groups.

Assume that $F_w$ is unramified. When $\bar{r}|_{G_{F_w}}$ is semisimple, it is possible to recover the data of $\bar{r}|_{G_{F_w}}$ from the $\mathrm{GL}_n(\mathcal{O}_{F_w})$-socle of $H^0(\bar{r})$ (also known as the set of Serre weights of $\bar{r}$). But when $\bar{r}|_{G_{F_w}}$ is wildly ramified this socle does not contain enough information. In this thesis we give an explicit recipe to find the missing data of $\bar{r}|_{G_{F_w}}$ inside the $\mathrm{GL}_3(F_w)$-action on $H^0(\bar{r})$ when $n=3$ and $\bar{r}|_{G_{F_w}}$ is maximally nonsplit, Fontaine-Laffaille, and generic.  This generalizes work of Herzig, Le and Morra who found analogous results when $F_w=\mathbb{Q}_p$ as well as work of Breuil and Diamond in the case of unramified $\mathrm{GL}_2$.

Departmental PhD Thesis Exam – Zackary Wolske

Everyone is welcome to attend.  Refreshments will be served in the Math Lounge before the exam.

Monday, June 18, 2018
2:10 p.m.
BA6183

PhD Candidate:  Zackary Wolske
Supervisor:   Henry Kim
Thesis title:   Number Fields with Large Minimal Index

***

Abstract:

The index of an integral element alpha in a number field K with discriminant D_K is the index of the subring Z[alpha] in the ting of integers O_K. The minimal index m(K) is taken over all alpha in O_K that generate the field. This thesis proves results of the form m(K) << |D_K|^U for all Galois quartic fields and composites of totally real Galois fields with imaginary quadratic fields, and of the form m(K) >> |D_K|^L for infinitely many pure cubic fields, both types of Galois quartic fields, and the same composite fields, with U and L depending only on the type of field. The upper bounds are given by explicit elements and depend on finding a factorization of the index form, while the lower bounds are established via effective Diophantine approximation, minima of binary quadratic forms, or norm inequalities. The upper bounds improve upon known results, while the lower bounds are entirely new. In the case of imaginary biquadratic quartic fields and the composite fields under consideration, the upper and lower bounds match.

A copy of the thesis can be found here:  ZWolskePhDThesisJune14

Departmental PhD Thesis Exam – Shuangjian Zhang

Everyone is welcome to attend.  Refreshments will be served in the Math Lounge before the exam.

Tuesday, May 15, 2018
11:10 a.m.
BA6183

PhD Candidate:  Shuangjian Zhang
Supervisor:   Robert McCann
Thesis title: Existence, Uniqueness, concavity and geometry of the monopolist’s problem facing consumers with nonlinear price preferences

***

Abstract:

A monopolist wishes to maximize her profits by finding an optimal price menu. After she announces a menu of products and prices, each agent will choose to buy that product which maximizes his own utility, if positive.  The principal’s profits are the sum of the net earnings produced by each product sold. These are determined by the costs of production and the distribution of products sold, which in turn are based on the distribution of anonymous agents and the choices they make in response to the principal’s price menu.
In this thesis, two existence results will be provided, assuming each agent’s disutility is a strictly increasing but not necessarily affine (i.e.\ quasilinear) function of the price paid. This has been an open problem for several decades before the first multi-dimensional result given by N\”oldeke and Samuelson in 2015.
Additionally, a necessary and sufficient condition for the convexity or concavity of this principal’s (bilevel) optimization problem is investigated.  Concavity when present, makes the problem more amenable to computational and theoretical analysis;  it is key to obtaining uniqueness and stability results for the principal’s strategy in particular.  Even in the quasilinear case, our analysis goes beyond previous work by addressing convexity as well as concavity,  by establishing conditions which are not only sufficient but necessary,  and by requiring fewer hypotheses on the agents’ preferences. Moreover, the analytic and geometric interpretation of certain condition that equivalent to concavity of the problem has been explored.
Finally, various examples has been given, to explain the interaction between preferences of agents’ utility and monopolist’s profit to concavity of the problem. In particular, an example with quasilinear preferences on $n$-dimensional hyperbolic spaces was given with explicit solutions to show uniqueness without concavity. Besides, similar results on spherical and Euclidean spaces are also provided. What is more, the solutions of hyperbolic and spherical converges to those of Euclidean space as curvature goes to 0.

A copy of the thesis can be found here:  Shuangjian-thesis

Departmental PhD Thesis Exam – Benjamin Briggs

Everyone is welcome to attend.  Refreshments will be served in the Math Lounge before the exam.

Friday, May 18, 2018
2:10 p.m.
BA6183

PhD Candidate:  Benjamin Briggs
Co-Supervisors:   Joel Kamnitzer, Srikanth Iyengar
Thesis title:  Local Commutative Algebra and Hochschild Cohomology Through the
Lens of Koszul Duality

***

Abstract:

This thesis splits into two halves, the connecting theme being Koszul duality. The first part concerns local commutative algebra. Koszul duality here manifests in the homotopy Lie algebra. In the second part, which is joint work with Vincent G\’elinas, we study Hochschild cohomology and its characteristic action on the derived category.

We begin by defining the homotopy Lie algebra $\pi^*(\phi)$ of a local homomorphism $\phi$ (or of a ring) in terms of minimal models, slightly generalising a classical theorem of Avramov. Then, starting with work of F\'{e}lix and Halperin, we introduce a notion of Lusternik-Schnirelmann category for local homomorphisms (and rings). In fact, to $\phi$ we associate a sequence $\cat_{0}(\phi)\geq \cat_1(\phi)\geq \cat_2(\phi)\geq \cdots$ each $\cat_i(\phi)$ being either a natural number or infinity. We prove that these numbers characterise weakly regular, complete intersection, and (generalised) Golod homomorphisms. We present examples which demonstrate how they can uncover interesting information about a homomorphism. We give methods for computing these numbers, and in particular prove a positive characteristic version of F\'{e}lix and Halperin’s Mapping Theorem.

A motivating interest in L.S. category is that finiteness of $\cat_2(\phi)$ implies the existence of certain six-term exact sequences of homotopy Lie algebras, following classical work of Avramov. We introduce a variation $\pic(\phi)$ of the homotopy Lie algebra which enjoys long exact sequences in all situations, and construct a comparison $\pic(\phi)\to \pi^*(\phi)$ which is often an isomorphism.
This has various consequences; for instance, we use it to characterise quasi-complete intersection homomorphisms entirely in terms of the homotopy Lie algebra.

In the second part of this thesis we introduce a notion of $A_\infty$ centre for minimal $A_\infty$ algebras. If $A$ is an augmented algebra over a field $k$ we show that the image of the natural homomorphism $\chi_k:\HH(A,A)\to {\rm Ext}^*_A(k,k)$ is exactly the $A_\infty$ centre of $A$, generalising a theorem of Buchweitz, Green, Snashall and Solberg from the case of a Koszul algebra. This is deduced as a consequence of a much wider enrichment of the entire characteristic action $\chi:\HH(A,A)\to {\sf Z}(D(A))$. We give a number of representation theoretic applications.

A copy of the thesis can be found here:  Benjamin_Briggs_201811_PhD_thesis

Panel discussion: What can you do with a PhD in math anyway?

A career panel for graduate students in mathematics

Graduate Career Poster

When: April 20, 2018
Where: BA6183
Time: 3:00-4:00 p.m.

Reception and networking to follow in the graduate lounge.

RSVP: https://doodle.com/poll/wbeb4rppg5vipuq4

Panelists

Alex Bloemendal:
Alex  is a computational scientist at the Broad Institute of MIT and Harvard and at the Analytic and Translational Genetics Unit of Massachusetts General Hospital. As a member of Broad institute member Ben Neale’s lab, Alex leads a group in developing new methods to analyze genetic data, harnessing its unprecedented scope and scale to discover the genetic causes of disease. He also co-founded and directs the Models, Inference & Algorithms initiative at the Broad, bridging computational biology, mathematical theory, and machine learning. Alex is an institute scientist at the Broad.  Alex was previously a research scientist in the Program for Evolutionary Dynamics and a Simons Fellow in the Department of Mathematics at Harvard University. His research in probability theory and random matrices focused on questions of signal and noise in high-dimensional data; he proved an open conjecture with wide-reaching applications for fields including population genetics. He also earned a teaching award for an advanced course on probability.  Alex received an Hon. B.Sc., M.Sc., and Ph.D. in mathematics from the University of Toronto

Aaron Chow:
Aaron is a Senior Information Security Consultant – Security Engineering at CIBC. He graduated from our doctoral program in 2014.

Dorian Goldman:
Dorian develops mathematical models using modern methods in machine learning and statistics for Conde Nast. He’s also an Adjunct Professor of data science at Columbia University, where he’s teaching a course on using data science in industry which has received overwhelmingly positive reviews. He completed his MSc degree in mathematics at UofT and his PhDs at the Courant Institute (NYU) and UPMC (Paris VI) and worked full time as a research-only fellow and instructor of mathematics at DPMMS at the University of Cambridge. He worked in Germany, France, England and the USA over the past several years while completing his degrees and gained considerable experience in variational methods, differential equations and applied analysis. He transitioned into data science and machine learning three years ago, and became very passionate about the mathematical sophistication and significant impact that the field has.

Diana Ojeda:
Diana got her PhD in set theory at Cornell University and was a postdoc at U of T from 2014 to 2017.  She now works as a SoC Engineer at Intel, developing modelling and analysis tools for FPGAs.

Ben Schachter:
Benjamin Schachter is a Consultant at the Boston Consulting Group, based in the Toronto office. He joined BCG full time in January 2018, after previously working at BCG as a summer Consultant in 2016. Ben has primarily worked in the technology, media, and telecommunications (TMT) practice area.  Ben completed his PhD in mathematics at the University of Toronto in 2017; his research focused on optimal transport and the calculus of variations.  Ben also holds an MSc in mathematics from the University of Western Ontario and an MA and BA (hons.), both in economics, from the University of Toronto.

Departmental PhD Thesis Exam – Anup Dixit

Everyone is welcome to attend.  Refreshments will be served in the Math Lounge before the exam.

Wednesday, March 21, 2018
2:10 p.m.
BA6183

PhD Candidate:  Anup Dixit
Supervisor:   Kumar Murty
Thesis title:  The Lindelof class of L-functions

***

Meromorphic functions, called L-functions, play a vital role in number theory.  In 1989, Selberg defined a class of L-functions that serves as an axiomatic model for L-functions arising from geometry and arithmetic. Even though the Selberg class successfully captures many characteristics common to most L-functions, it fails to be closed under addition. This creates obstructions, in particular, not allowing us to interpolate between L-functions. To overcome this limitation, V. K. Murty defined a general class of L-functions based on their growth rather than functional equation and Euler product. This class, which is called the Lindelof class of L-functions, is endowed with the structure of a ring.

In this thesis, we study further properties of this class, specifically, its ring structure and topological structure. We also study the zero distribution and the a-value distribution of elements in this class and prove certain uniqueness results, showing that distinct elements cannot share complex values and L-functions in this class cannot share two distinct values with any other meromorphic function. We also establish the value distribution theory for this class with respect to the universality property, which states that every holomorphic function is approximated infinitely often by vertical shifts of an L-function. In this context, we precisely formulate and give some evidence towards the Linnik-Ibragimov conjecture.

A copy of the thesis can be found here: Anup-Dixit-Thesis