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Abstract

We construct a moduli stack of rank 4 symplectic projective étale (o, I')-modules and prove its geometric
properties for any prime p > 2 and finite extension K/Q,. When K/Q, is unramified, we adapt the
theory of local models recently developed by Le-Le Hung—Levin—Morra to study the geometry of potentially
crystalline substacks in this stack. In particular, we prove the unibranch property at torus fixed points of
local models and deduce that tamely potentially crystalline deformation rings are domain under genericity
conditions. As applications, we prove, under appropriate genericity conditions, an GSp,-analogue of the
Breuil-Mézard conjecture for tamely potentially crystalline deformation rings, the weight part of Serre’s
conjecture formulated by Gee—Herzig—Savitt for global Galois representations valued in GSp, satisfying

Taylor—Wiles conditions, and a modularity lifting result for tamely potentially crystalline representations.
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Chapter 1

Introduction

Serre’s modularity conjecture predicts that every continuous, irreducible, odd Galois representations 7 :
Gal(Q/Q) — GLy(F,) arise from modular forms [Ser87]. Its refined version predicts the minimal weight
of modular forms that give rise to 7 in terms of the restriction of 7 at p. The weight part of Serre’s conjecture,
saying that the original conjecture implies the refined conjecture, was crucial for the proof of the original
conjecture due to Kisin and Khare—Winterberger [KW09a; KW09b; Kis09].

The weight part of Serre’s conjecture has been generalized, most notably, to 2-dimensional Galois repre-
sentations over a totally real field [BDJ10], to Galois representations over a totally real field valued in GL,,
[Her09] and in more general groups G [GHS18]. (Both [Her09] and [GHS 18] assume that p is unramified in
the totally real field and the Galois representations are tamely ramified at places above p. See [Le+a, Con-
jecture 1.6.2] for a generalization to wildly ramified representations, and [Le+b, Definition 1.1.1] to a totally
real field in which p ramifies.) In these generalizations, the notion of weight is replaced by Serre weights,
irreducible F,-representations of G(F,).

Although stated in the global context, the weight part of Serre’s conjecture is closely related to the mod p
Langlands program. Let K/Q,, be a finite extension. The mod p Langlands program predicts a certain corre-
spondence between admissible smooth F,-representations of a p-adic reductive group G(K) and continuous
representations of Gal(K /K) valued in the C-group “G(F,) defined in [BG14]. (In this thesis, we only
consider G = GL,, or G = GSp,, in which case “Gis isomorphic to G x GL, and it is equivalent to work
with G.) Such correspondence has been established only in the case G = GL3 and K = Q,, [Col10; Pas13]
or G = GL;. Despite many recent advances (for example, see [Car+16; Bre+a]) in the program, its intri-
cate nature still remains poorly understood, and a precise conjecture for G = GL,, was only made recently
[EGH22] in a categorical language. However, using global methods, one can construct a candidate for a mod
p Langlands correspondence, namely, an admissible smooth F-representation IT of GL,,(K) associated with
an n-dimensional continuous F,-representation p of Gal(K /K). One major open problem is to prove that IT
only depends on p and not on non-canonical choices made in the global argument. The weight part of Serre’s
conjecture describes the Serre weights appearing in the GL,,(Of)-socle of II explicitly in terms of 5|z, .
Thus, the weight part of Serre’s conjecture has been a guiding principle in the mod p Langlands program.

The theory of Galois deformations has played an important role in many advances in proving the weight
part of Serre’s conjecture ([Le+18; Le+20; Le+a]), in the mod p and p-adic Langlands program ([Col10;
Pas13; Car+16; Bre+b]), and in proving modularity lifting results ([TW95; Wil95; CHTOS; Bar+14; Box+21]).

Recently, Emerton—Gee constructed an object which algebraically interpolates deformation spaces of n-
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dimensional p-adic Galois representations (called the Emerton—Gee stack [EG23]). Thus, it allows us to
employ more geometric methods to study p-adic Galois representations. Most importantly, it is an essential
ingredient in formulating the categorical mod p and p-adic Langlands conjecture [EGH22]. When K/Q,
is unramified, [Le+a] developed a theory of local models to study the geometry of potentially crystalline
substacks in Emerton—Gee stacks. In particular, it is applied to analyze singularities of tamely potentially
crystalline deformation rings. This led to several applications, including the weight part of Serre’s conjecture
and the Breuil-Mézard conjecture. The objective of this thesis is to generalize Emerton—Gee stacks, local
models, and their applications to Serre weight conjectures and the Breuil-Mézard conjecture to the group
GSp,.

Emerton-Gee stacks for GSp,

Let p be a prime and K/Q,, be a finite extension with the ring of integers O, a uniformizer w, and the
residue field k. We also fix a sufficiently large finite extension E/Q,, with the ring of integers O, a uni-
formizer w0, and the residue field F.

In [EG23], Emerton—Gee constructed X, x a moduli stack of rank n projective étale (¢, I')-modules. For
a finite O-algebra A, rank n projective étale (¢, I') modules with A-coefficients are equivalent to continuous
representations of G := Gal(K /K) on rank n projective A-modules. However, for general A, étale (¢, T')-
modules behave better than G g -representations in algebraic families. In particular, a family of reducible étale
(¢, T')-modules can converge to an irreducible one, unlike G g -representations. Thus, X, x is considered the
correct notion of a moduli stack of “p-adic Langlands parameters”.

To generalize Emerton—Gee stacks to GSp,, we define a symplectic projective étale (¢, T')-module to
be a triple (M, N, a) where M is a rank 4 projective étale (¢, ") module, N is a rank 1 projective étale
(p,T')-modules, and « : M ~ MY ® N is an essentially self-dual isomorphism satisfying a certain sign
condition (Definition 4.1.1). These reflect the underlying 4-dimensional vector space of GSp,, the similitude
character of GSp,, and the non-degenerate skew-symmetric bilinear form on the 4-dimensional vector space,
respectively. Under Fontaine’s equivalence, symplectic projective étale (i, I')-modules with A-coefficients
for finite local O-algebra A are equivalent to continuous representations p : G — GSp,(A). We let Xgym
be a category fibered in groupoids over Spf O whose groupoid of A-points, for a p-adically complete O-
algebra A, is the groupoid of symplectic projective étale (¢, I')-modules with A-coefficients. The following

Theorem generalizes main properties of ), x t0 Xgym K-
Theorem 1 (Theorem 4.1.5, Proposition 4.1.6, Theorem 4.1.10). Suppose that p > 2.
1. The category fibered in groupoids Xsym r is a Noetherian formal algebraic stack.

2. For each Hodge type \ and inertial type T, there exist a closed substack XS’\};;’ K (resp. ng;li;;( ) which
is furthermore a p-adic formal algebraic stack and flat over O. It is uniquely characterized as O-flat
closed substack such that for any finite flat O-algebra A, XS)\mi x (A) (resp. XSS;I?I;( (A)) is equivalent
to the groupoid of representations p : G — GSp,(A) such that p ® 4 E is potentially crystalline

(resp. semistable) representations with Hodge type \ and inertial type T.

3. The underlying reduced substack Xsym i red C Xsym, K 1S an algebraic stack over F and equidimen-
sional of dimension 4[K : Q). Moreover, its irreducible components are naturally labelled by Serre

weights.
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The proofs of item (1) and (2) use the corresponding results for the Emerton—Gee stack for GL4 x GL; and
can be easily generalized to GSps,,. To prove item (3), we first construct irreducible components correspond-
ing to Serre weights and prove that their union is equal to the stack Xsym i red, following the strategy for
GL,,. The construction of irreducible components requires a generalization of a result of Emerton—Gee con-
structing a family of extensions using abelian Galois cohomology. One difference between GSp, and GL,,
is the presence of a non-abelian unipotent radical of a maximal parabolic subgroup @) called the Klingen
parabolic subgroup. It is unclear how the construction of Emerton—Gee can be generalized to the non-abelian
case. Instead, we construct a family of extensions valued in () inside a family of extensions valued in the
minimal parabolic of GL4 containing ) by only using abelian Galois cohomology. To prove that their union
is equal to the stack Xsyr, k red, We need to prove the existence of crystalline lifts for any continuous repre-
sentation G — GSp,(F). In this case, it seems inevitable to use non-abelian Galois cohomology. We prove
this by using the main result in [Lina], which develops an obstruction theory for lifting mod p representations
of Gi valued in reductive groups.

While we were writing this thesis, Zhongyipan Lin posted a preprint that constructs generalizations of
Emerton—Gee stacks to tamely ramified reductive groups and proves their Noetherian formal algebraicity
using a Tannakian formalism [Linb].

Local models for potentially crystalline stacks

From now on, we assume that K/ Q,, is unramified of degree f.

In [Le+a], the authors constructed local models of potentially crystalline substacks of X, x using Breuil—-
Kisin modules. One can associate a Breuil-Kisin module with descent data to a lattice in a potentially
crystalline representation. Using this, they identify the potentially crystalline stacks (with bounded p-adic
Hodge type) with a certain closed substack of the moduli stack of Breuil-Kisin modules with descent data
constructed in [CL18]. It is proved in loc. cit. that the moduli stack of Breuil-Kisin modules with descent
data is smoothly equivalent to a Pappas—Zhu local model studied in [PZ13]. The innovation in [Le+a] is a
construction of certain subvarieties in Pappas—Zhu local models whose open neighborhoods are, after p-adic
completion, smoothly equivalent to open neighborhoods of potentially crystalline stacks.

The Pappas—Zhu local models exist for any connected reductive group which splits over a tamely ram-
ified base change. Let M (< \) be the Pappas—Zhu local model over Spec O associated to the group
Resk/q, GSpy, Iwahori subgroup of GSp, (K ), and a regular Hodge type A. Following the idea of [Le+a],
we construct a closed subvariety M (\, V,_) C M(< A) for a tame inertial type 7. The following Theorem
generalizes the main result on local models in [Le+a] to GSpy,.

Theorem 2 (Theorem 4.4.3). Let XsﬁTK’reg (resp. Myeg (< A, Va,)) be the union ofXS?‘};;;K (resp. M(N,Va.))
Sor all regular Hodge types X' < X. Suppose that \ is regular and T is sufficiently generic (depend-
ing on \). There exist Zariski open covers {Xsf},ﬁfKreg(Z)}g of ngy/x\ﬁ,TK,reg and {Uyes(Z, < A\, Va, )}z of
Mieg(< A, Va, ), and for each Z, a local model diagram

Ureg (Zv S )\a va, )/\p

T — T _ N
X, (2) Ureg(Z, < A\, Va_)?.

Sym, K reg

Here, ﬁreg(z, <\ Va, ) =T x Ureg (2, < A\, Va,) = Ureg(Z, < A\, Va,) is the trivial T -torsor, and the

left diagonal arrow is a T -torsor under a different T -action, where T is the diagonal maximal torus of
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GSpy, and N, denotes the p-adic completion.

Note that if A is equal to a cocharacter 7 lifting the half sum of positive coroots, then ngy?ﬁTK reg =
XSW}ZH,K and Mreg(g m, vaT) - M(n, VaT).

Similar to symplectic étale (o, I')-modules, we define symplectic Breuil-Kisin modules and denote by

YS)\’T

Sym the moduli stack of symplectic Breuil-Kisin modules of height < A and inertial type 7. We prove

that the stack YS%:‘H’T is p-adic formal algebraic stack over Spf O (Proposition 4.2.5) and locally smoothly
equivalent to M (< A)"» (Theorem 4.2.16). There exists a closed substack YS%Y;\H’T’V“’ C Ys%yif which is
isomorphic to ngy;\;:K’reg (Proposition 4.4.2). We note that the locus Yfkmv% is analytic, i.e. it is given by
formal power series, while in contrast, the subvariety M (A, V,_ ) C M(< A) is algebraic. However, these
conditions defining substack/subvariety are “congruent modulo power of p” (in a suitable sense). Then the
left arrow in the above diagram is induced by applying Elkik’s approximation theorem [Elk73]. In particular,
it is highly non-canonical but canonical modulo p.

The local model M (), V) is a projective variety equipped with a natural 7'/ -action. Its 7/ -fixed points
are given by certain elements Z in the extended affine Weyl group of (GSp, ). Under the above local model
diagram, they correspond to tame p € XS%,’I\HTK(F) The main result on the geometry of local models is the

following.

Theorem 3 (Theorem 3.4.1). Suppose that ) is regular and 7 is sufficiently generic (depending on \). Then
M (X, Va,) is unibranch at any T -fixed point Z € M(\, Va, )(F).

Our proof of Theorem 3 follows [Le+a] closely. The novel idea in loc. cit. is comparing the (mixed
characteristic) local model M (\, V,) (defined over Spec O) with an equal characteristic local model (defined
over Spec F[v]) inside an universal local model (defined over Spec Z[v]). In general, the mixed and equal
characteristic local models are not a base change of the universal local model. However, this is true under
a genericity hypothesis, and they naturally have the same special fiber. We prove the unibranch property
in the equal characteristic case and use it to prove the mixed characteristic case. Here, it is also crucial
to compare the base change of the normalization of universal local models and normalizations of mixed and
equal characteristic local models. This requires the base change of the normalization of universal local models
to be normal, which also holds under a genericity hypothesis. Using these ideas, we first prove a preliminary
unibranch property (Theorem 3.3.4). Then using this, we prove the main unibranch property for products of
local models (Theorem 3.4.1).

Letp : Gk — GSp,(F) be a continuous representation. We denote by R%’T the unique O-flat quotient of
a framed deformation ring R%’ of p whose Qp-points parameterize potentially crystalline lifts of type (A, 7).

As a direct consequence of Theorem 2 and 3, we obtain the following result.

Corollary 4. Suppose that X is regular and T is sufficiently generic (depending on \). If p : G — GSp,(F)

. A . . ep
is tame, then Rﬁ’T is a domain (if is nonzero).

The importance of this Corollary is related to patching argument. Roughly speaking, patching argument
constructs a module Mo (A — 1, 7) over (a certain modification of) R%’T. Standard commutative algebra
argument shows that the support of Mo, (A — 7, 7) is a union of irreducible components in Spec R%’T. It
is a folklore conjecture that the support is indeed equal to Spec R%’T, which almost immediately implies a
modularity lifting result in a relevant setup. Moreover, it has applications to the Serre weight conjectures
and the Breuil-Mézard conjecture (see [GHS18, §4.1] for its relationship to the Breuil-Mézard conjecture).
Unfortunately, this is hard to prove in general. However, if M., (A — n,7) # 0 and R%’T is domain, then the
support of Mo, (A — 7, 7) has to be equal to Spec R%’T.
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Remark 5. As in [Le+a], our main results on local models, as well as results in the remaining introduction,
hold under suitable genericity conditions. In particular, genericity conditions imply that the Hodge type A is

small relative to p. We refer readers to §1.3 in loc. cit. for discussions on genericity conditions.

The geometric Breuil-Mézard conjecture

The original Breuil-Mézard conjecture [BM02] measures the complexity of the special fiber of potentially
crystalline (or semistable) deformation rings in terms of the mod p representation theory of GL,, (k). It’s
geometric formulations are stated in [EG14] (for deformation rings) and [EG23] (for Emerton—Gee stacks)
and proven in [Le+a] in the tamely potentially crystalline case under genericity assumptions. Also, Dotto
formulated the Breuil-Mézard conjecture for central division algebras and proved that it follows from the
conjecture for GL,, [Dot].

We formulate the geometric Breuil-Mézard conjecture for GSp, in the tamely potentially crystalline case
and prove it under genericity assumptions. We first explain the conjecture for deformation rings. Let R?D be a
framed deformation ring of p. Given a regular Hodge type A and a mildly generic tame inertial type 7, there
exists a (4f 4 11)-dimensional cycle Z (R%’T /@) in Spec R%' /@ which counts the irreducible components in
Spec R%’T /o with appropriate multiplicities. On the other hand, one can associate to the pair (A, 7) a locally
algebraic representation o(7) ®o V(A — 1) of GSp,(Ok). Here, o(7) is an irreducible representation of
GSp, (k) corresponding to 7 under the inertial local Langlands correspondence, which we discuss below, and
V(X —n) is the irreducible algebraic representation of GSp, (O ) of highest weight A — 7.

Conjecture 6. Let p : G — GSp,(F) be a continuous representation. For each Serre weight o, there exists
a (4f + 11)-dimensional cycle Z, in Spec RﬁD/w such that for any regular Hodge type )\ and any mildly

generic tame inertial type T,

Z(RYTJ@m)=> [o(m)@V(X—1n):0]Z,. (1.0.1)
Similar to the case of deformation rings, one can construct a 4 f-dimensional cycle Z - in Xsym, K red

attached to XS’\mi K Xspeco SpecF .

Conjecture 7. For each Serre weight o, there exists a 4 f-dimensional cycle Z, in Xsym K red sSuch that for

any regular Hodge type A and any mildly generic tame inertial type T,

Zyr =Y oM@ V(A —n):0]Z,. (1.0.2)
Remark 8. Both Conjecture 6 and 7 should extend to any inertial type 7. We only state them for mildly
generic (more precisely, 1-generic in the sense of §2.1.7) tame inertial types because we prove the inertial
local Langlands under this condition. Also, they are expected to generalize to potentially semistable defor-

mation cases.
Our main result on the Breuil-Mézard conjecture is the following.
Theorem 9 (Corollary 6.1.17 and 6.1.18). Let A be a finite set of regular Hodge types \.

1. For each Serre weight o, there exists a 4 f-dimensional cycle Z, in Xsym K red such that (1.0.2) holds
for any regular Hodge type \ € A and any sufficiently generic (depending on \) regular tame inertial

type T.
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2. Letp : Gk — GSp,(F) be sufficiently generic (depending on A). For each Serre weight o, there exists
a (4f + 11)-dimensional cycle Z, in Spec R%‘/w such that (1.0.1) holds for any regular Hodge type

A € A and any regular tame inertial type T.

By using patching functors and Corollary 4, we first construct cycles Z, satisfying (1.0.1) for regular
A, sufficiently generic 7, and tame p (Theorem 6.1.3). Then we algebraically interpolate Z,, for various p to
construct Z, in item (1) following the axiomatic argument in [Le+a, §8.3]. Item (2) (where we do not assume
that p is tame) essentially follows from item (1) by pulling back the cycles Z, to a versal ring for Xsym i red

at p.

The weight part of Serre’s conjecture

Let F be a totally real field of even degree over Q in which p is unramified. Let G be an inner form of
GSp, over F' which is compact modulo center at infinity and splits at all finite places. Fix an isomorphism
v : Q, = C. Given a Hecke character x : A} /F* — C*,alevel U C G(AF), and a O[G(OF ©z Zy)]-
module W, we define a space of algebraic automorphic forms .S, (U, W) to be the O-module of continuous
functions f : G(F)\G(A%) — W such that f(zg) = (:7' o x(2))f(g9) and f(gu) = u, " - f(g) for all
z€ Z(A¥),9g € G(AY),andu € U.

Let 7 : Gp — GSp,(F) be a continuous and absolutely irreducible representation which is the mod p
reduction of the Galois representation attached to a regular algebraic cuspidal automorphic representation of
G(AF) (or equivalently, of GSp,(Ar)). Then 7 determines a maximal ideal my of an appropriate Hecke
algebra, and S’X(U7 0)m, 7 0 for some y, U, and Serre weight o. In this case, we say o is a modular Serre
weight for 7 and write W (7) for the set of modular Serre weights for 7. When 7 is tame at places above p,
[GHS18] defines a set W?(®v‘pF| Ir, ) (see Definition 2.4.7) using combinatorial recipes, where I, denotes
the inertia subgroup at v, and conjectures that W (7) = W’ (®,,7|1,, ). We verify this conjecture under

technical genericity assumptions.

Theorem 10 (Theorem 6.2.5). Let 7 : G — GSpy(F) be as above. Moreover, we assume that 7|,
is tame and sufficiently generic for v
W (F) = W (@y|pTl1r, )-

p, and T satisfies Taylor—Wiles conditions (Definition 5.4.1). Then

Previously, a similar conjecture was made by Herzig—Tilouine [HT13, Conjecture 1] when F' = Q using
étale cohomologies of Siegel modular varieties instead of algebraic automorphic forms on G. We expect that
our method can be used to prove the conjecture of Herzig—Tilouine (or its generalizations to totally real fields)
if the conjecture on vanishing of mod p étale cohomologies of Hilbert—Siegel modular varieties localized at
non-Eisenstein maximal ideal outside middle degree is known (c.f. [Car, Conjecture 4.3]).

Analogous conjectures for a rank n unitary group U (n) over totally real field were proven under technical
assumptions (when U (n) splits at places above p by [GLS15] for n = 2, by [Le+18; Le+20] for n = 3, and
by [Le+a] for general n; when U(n) ramifies at places above p by [KM] for n = 2). For the group GSp,,
[GG12] proved modularity of obvious weights for 7 ordinary at places above p assuming modularity of a
single obvious weight. Also, see [ Yam, Theorem 1.3] for a result obtained by a different approach. Our result
is independent of [GG12; Yam].

Congruent Kisin—Taylor—Wiles patching functors

The proofs of Theorem 9 and 10 use patching functors. Patching functors are first introduced in [EGS15]
and have been a central object in the mod p and p-adic Langlands program (see [Car+16] and [EGH22]).
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Our innovation in the global argument is introducing a congruent family of fixed similitude patching functors
(Definition 5.2.4). It is a collection of fixed similitude patching functors, labelled by an appropriate set of
similitude characters, that are congruent modulo p, i.e. they are identified when restricted to p-torsion objects.
A single fixed similitude patching functor generalizes a (weak) patching functor in [Car+16; Le+a] to GSp,
except the presence of the fixed similitude. The fixed similitude prevents important applications such as the
comparison of the mod p reduction of patched modules over a crystalline deformation ring and a potentially
crystalline deformation ring. However, a congruent family of fixed similitude patching functors makes such
applications available through the congruence. We remark that our notion of congruent patching functors can
describe Taylor’s “Thara avoidance” argument; see §5.4.8.

We construct patching functors for local and global applications. In the local case, it is a functor from
a category of finite @O-modules with continuous GSp,(Of )-action with a fixed central character to a cate-
gory of finitely generated modules over a certain deformation ring. In the global case, we replace the group
GSp,(Ok) by GSp,(Or ®z Z,,) where F is a totally real field. Although the construction of patching
functors depends on non-canonical choices (e.g. Taylor—Wiles primes), these choices can be made indepen-
dent of the fixed similitude character. Then the congruence property of fixed similitude patching functors
in the global case follows naturally. We construct patching functors in the local case using the global ones,
after realizing a given local Galois representation as a restriction of an automorphic global Galois representa-
tion with a minimality assumption, following [EG14, Appendix A] for GL,,. The congruent property is less
obvious in the local case and requires the weight elimination result (Theorem 5.4.4) and certain potentially
crystalline deformation rings with fixed similitude characters that are formally smooth and congruent modulo
p (Theorem 5.1.4). In particular, our congruent patching functors improve a congruent pair of fixed simili-
tude patching functors introduced in our previous work with John Enns [EL], where the patching functors in
the local case was not available because the weight elimination result was not available.

We also incorporate the “Thara avoidance” argument in our patching functors to prove the following

modularity lifting result.

Theorem 11 (Theorem 6.3.1). Letr,r’ : Gr — GSp,(O) be continuous representations that are isomorphic
modulo w, unramified at all but finitely many places, and potentially crystalline with regular Hodge type A
and sufficiently generic (depending on \) tame inertial type T at places above p. We further assume that
r mod @ is tame at places above p and satisfies Taylor-Wiles assumptions. If ' is automorphic, then r is

also automorphic.

The inertial local Langlands

For a mildly generic tame inertial type 7, we construct an irreducible representation o(7) of GSp,(k) in
characteristic zero such that if a smooth representation 7 of GSp, (K') contains o (7) (viewed as a GSp,(Ox)
via inflation) as a GSp, (O )-subrepresentation, then 7 is isomorphic to the restriction to inertia of the L-
parameter of 7 (Theorem 2.4.1). This result is essential to our global arguments. It is proven by using
the explicit theta correspondence in [GT11b] (in the non-supercuspidal case) and the depth-zero regular

supercuspidal local Langlands correspondence in [DR09] (in the supercuspidal case).

Transfer from GSp, to GL4

We define natural maps sending Deligne-Lusztig representations and Serre weights of GSp, (k) to those of
GL4 (k) (Proposition 2.4.10), which might be of independent interests. They are compatible with mod p
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reduction under a very mild assumption. In the case of Deligne—Lusztig representations, it is also compatible
with inertial local Langlands in a suitable sense. Moreover, this also shows that a Serre weight o of GSp, (k)
is in the set W7 (p|1,.) of conjectural Serre weights associated with tame 5 : G — GSp,(F) if and only
if its transfer to GL4 (k) is in the set of conjectural Serre weights of GL4 (k) associated with p viewed as
GL4(F)-valued representation (Corollary 2.4.12).

The work of Arthur

In this thesis, we use Arthur’s multiplicity formula for the discrete spectrum of GSp, announced in [Art04]
and later proven in [GT19] using the main results in [Art13]. We also use results from [Mok14; Box+21]
which rely on Arthur’s formula for GSp,. At the time of writing, [Art13] is conditional on the twisted
weighted fundamental lemma announced in [CL10], but whose proofs have not appeared, as well as on the
references [A25], [A26], and [A27] in [Art13], which have not appeared publicly.

Specifically, we use [Mok14, Theorem 3.5] and [GT19, Theorem 7.4.1] for the construction of a Galois
representation attached to a regular algebraic cuspidal automorphic representation of an inner form of GSp,,,
and our construction of patching functors relies on it. Among theorems and corollaries stated above, proofs
of Theorem 1 and 3 do not require patching functors, and all others rely on patching functors (and thus on
[Art13]).

Organization

In §2, we first recall basic notions related to the representation theory of GSp, (k). Then we prove the
inertial local Langlands for GSp, in §2.4. In §2.5, we establish several results on mod p reduction of certain
representations of GSp, (k) which will be used throughout the thesis.

In §3, we introduce local models and prove its properties. Our presentation closely follows [Le+a].
When it is possible, we tried to simplify our argument by deducing results from analogous results for GL,.
After introducing the global affine Grassmannian and universal local models in §3.1-3.2, we introduce mixed
characteristic local models and prove the unibranch property in §3.3-3.4. In §3.5-3.7, we discuss irreducible
components in the special fiber of mixed characteristic local models. In §3.7, we classify torus fixed points
in each irreducible components under genericity conditions.

We introduce moduli stacks of symplectic étale (o, I')-modules in §4.1, of Breuil-Kisin modules in §4.2,
and of étale (-modules in §4.3. Then we bring them together to prove our main result on local model
diagrams for potentially crystalline stacks (Theorem 4.4.3) and their for mod p reduction (Theorem 4.5.4).
Both results rely on the existence of certain local lifts whose proofs are postponed to §5.4.

In §5, we discuss our setup for global arguments and construct a congruent family of fixed similitude
patching functors. As applications, we prove the weight elimination result and the existence of certain local
lifts in §5.4.

Finally, we formulate the geometric Breuil-Mézard conjecture and prove its restricted versions in §6.1.

We prove our result on the weight part of a Serre’s conjecture in §6.2 and a modularity lifting result in §6.3.

Notation

Let p > 2 be a prime. We let K/Q,, denote a finite field extension with the ring of integers O and the
residue field k. Throughout this thesis except §4.1, we assume K to be unramified of degree f over Q,. We
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take E to be a finite extension of Q,, with ramification degree e, the ring of integers O, and the residue field
F. We assume that E is sufficiently large unless mentioned otherwise. We let [-] : F* — W (F)* denote the
multiplicative lift.

Let F be a field. We write Gr := Gal(F/F) where F is a separable closure of F. If F is a non-
archimedean local field, we write I C G for the inertia subgroup and W for the Weil group.

Fix a separable closure K of K and suppose that K /Q,, is unramified of degree f. We choose 7 € K
such that 77’ =1 = —p. We denote by wx : Gx — O} the character defined by g(m) = wk(g)m for
g € G . For an embedding 0 : K — E, we write wg , = 0 0 Wk

Let € denote the p-adic cyclotomic character. If V' is a de Rham representation of Gk over E, then
for each 0 € Homgq, (K, E), we let HT, (V') denote the multiset of Hodge-Tate weights labelled by o
normalized so that HT, (¢) = {1}.

Let F' be a number field. For a place v of F, we let F}, be the completion of F' at v with the ring
of integers Op,, a uniformizer w,, and the residue field &, of size g,. We write Frobp, for a geometric
Frobenius element in G,. We normalize the Artin map Artp, : F 5 Wﬁi}’ so that uniformizers are
mapped to geometric Frobenius elements.

Let G be a split connected reductive group over Z. In the body of the thesis, we take either G = GSp,
or G = GL,. We write B C G for a choice of Borel subgroup, 7' C B for a maximal torus, and U C B
for the unipotent radical of B. Let @ C ® be the subset of positive roots in the set of roots for (G, B, T).
We denote by A the set of simple roots. We write X *(T) for the group of characters of 7' and X, (T') for the
group of cocharacters of 7. We write Ar C X*(T') and AY, C X, (T") for the root lattice and coroot lattice.
We let W denote the Weyl group, W, denote the affine Weyl group, and W denote the extended affine Weyl
group for G.

We write GV for the split reductive group over Z defined by the root datum (X,.(T), X*(T),®V, ®).
We write 7V C GV for the induced maximal split torus. We have isomorphisms X*(7V) ~ X, (T) and
X, (TV) ~ X*(T). We let WY, WY, and W denote the Weyl group, affine Weyl group, and extended
affine Weyl group for GV

We denote by O,, a finite étale Z,-algebra. In the body of this thesis, we take O, to be either Ok or
OF ®zZ,, for some totally real field F'in which p is unramified. Let F},, = Op[1/p]. Then F}, is isomorphic to

a product [ ] F, for a finite set S, and finite unramified extensions F,/Q,. Also there is an isomorphism

vES,
Op ~ e s, (’);U where Op, is the ring of integer of F,.

We define Gy := Resp, /z, G0, and G := (Go) 0. Let B be a choice of Borel subgroup and 7' C B
be a maximal split torus. We define By, B and Ty, I similarly to Go,G. Let 7 = Homgz (Op,O). Then
(G, B, T) is naturally identified with (G/JO, B‘/7O7 T/‘%) The root datum of (G, B, T) is given by

(X*(T), X.(T),®,@") ~ (X*(T)7, X.(T)7, 07, %"-7).

We have Ay ~ AL W ~ WY, W, ~ W, W ~ WY, and similarly for A%, WY, WY, W .

Let ¢ be the absolute Frobenius on O, /p and its lift to O,. If S is a set and s = (s,),e7 € S, then
we define 7(s) by m(s); = Ss0p-1. When O = Of, we fix an embedding o : K — E and define
0; =090 @ forj € Z/fZ. This identifies 7 with Z/ fZ.

We write Diag(ay, ..., ay) for the diagonal matrix in GL,, with entries a1, ..., a,. If 41 is a cocharacter
and a is a scalar, we write a* to denote p(a). We write Ind for the unnormalized parabolic induction and ind

for the compact induction.



Chapter 2

Types and weights

In this chapter, we recall basic notions regarding the representation theory and the extended Weyl group of
GSp, and prove the inertial local Langlands correspondence for GSp, (Theorem 2.4.1). We follow [Le+a,
§2] closely throughout this chapter except §2.4.

2.1 Preliminaries

2.1.1 The group GSp,

Let G = GSp, be the split reductive group over Z defined by
GSp,(R) = {g € GL4(R) | "'gJg = sim(g)J for some sim(g) € R* }

for any commutative ring 2, where

Then sim : g — sim(g) defines a character of GSp,, called the similitude character. Let W = N(T)/T be
the Weyl group of G. We identify W with the subgroup of N (T') generated by two simple reflections

S1 = , S2 1=

We write wg = $1525152 for the longest element in W. We use the same notation to denote 7-fold product
of wg in W.

Let B be the upper triangular Borel subgroup of GSp,. For any subset A C {s1, s2}, we have a standard
parabolic subgroup P4 generated by A and B. When A = {s;}, we call S := Py4 the Siegel parabolic
subgroup, and when A = {s2}, we call Q := P4 the Klingen parabolic subgroup. If P is a standard

10
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parabolic subgroup with unipotent radical N, we write P and N to denote the opposite parabolic and its
unipotent radical.

We identify the character group X *(7') with Z3 by defining the character corresponding to (a, b; ¢) € Z3
by

(a,b;c) : Diag(z,y, 2y~ 1, za71) = 2%2°.
Similarly, we identify the cocharacter group X, (T) with Z* by
(a,b;c) : x — Diag(z?®, 2%, 2°7b, 2°79).
Sets of simple roots and coroots are given by

A={a; =(1,-1;0),a0 = (0,2;-1))}
AY = {a\l/ = (L*]-;O),O‘;/ = (Oa 1a0)}

Sets of positive roots and coroots are given by

O = {1, 0,3 = 201 + g, a4 = a1 + az}

V4 V. .V VoV
P —{011,042703,044}

where a3 = ay + ag, ag = 201 + ao, @y =y +2ay, and of = of + .
The dual group of GSp, is isomorphic to GSp, by an exceptional isomorphism. We often write GSp,
(and T for its diagonal maximal torus) to emphasize that we are working on the dual side. We fix the duality

isomorphism by
(X*(T)7 X*(T)7 (I)a (I)v) :> (X*(Tv)v X*(Tv)a q)\/’ q))

¢: X*(T) = X.(TY)
(a,b;¢) = (a+b+c,a+c;a+b+ 2¢).

Then ¢ maps o to .y and g to ) . We also write amap ¢ : W = WV sending s1 + s, s2 = 1, so that

forany w € Wand A\ € X*(T). We fix an element = (2,1;0) € X*(T'). We often use the same notation
to denote the [7-fold product of  in X*(T') and its image in X, (T") under ¢.

2.1.2 The group GL,,

If G = GL,,, we add subscript n to the objects introduced above when we need to distinguish them from the
case G = GSp,. For example, we write ' = T,,, B = B,,U = U,,W = W,,. We identify X*(T,,) ~
X.(T,) ~ Z™ in the standard way. We fix an element '’ = (n — 1,n — 2,...,0) € X*(7T,,) and use the
same notation for its J-fold product in X*(T,,).



CHAPTER 2. TYPES AND WEIGHTS 12

2.1.3 Affine Weyl group

Let GG be a split reductive group over Z. Recall that the affine Weyl group W, ~ Ar x W and the extended
Weyl group W =~ X*(T) x W for G. Similarly, we write W,” ~ A}, x W" and WY~ X, (TV) x WV for
the affine Weyl group and extended Weyl group for GV.

Let A be the set of alcoves of X*(T') ®z R. We denote by Ay the dominant base alcove with respect
to our choice of the Borel subgroup B. The group W, acts simply transitively on .4, and the choice of A
defines a Bruhat order on W, which we denote by <. We also recall the upper arrow ordering on the set A
(see, [Jan03, §I1.6.5]). This induces an ordering on W, which we denote by 7.

Let Q < W be the subgroup stabilizing Ag. Then we have W ~ W, x Q. We extend a Bruhat order and
upper arrow order to W by: for wy,wy € W, and 61, d2 € , when §; = do, w101 < wads (resp. wyd; T
wado) if and only if wy < ws (resp. wy T ws), and when 01 # do, W11, Wods are incomparable.

We define a Bruhat order on W’ induced by the antidominant base alcove and extend to WV as in the

previous paragraph. We define a bijection

(=) W > WY

0 =t,w— 0 = p(w) Mty

This is an antihomomorphism of groups and preserves Bruhat ordering on both sides. We also write (—)* for

its inverse, i.e. if w € W and 2 = w*, then z* = w.

Definition 2.1.4. We define the admissible set associated to Ao € X*(T') as
Adm()\) = {6 ew | W < tyz, for some w € W} .

If A € X*(T), we define Adm(A) = [[;c , Adm(})

We similarly define Adm" (\) for A € X, (T"). The map (—)* induces a bijection between Adm (¢~ *()\))
and Adm" ().
The p-dot action of t,w € Won A € X* (T") ® R is defined as

tbw-XN:=wA+n) —n+pv
A p-alcove is a connected component of the complement
(X*(T) ® R)\ Uncamez {a | (@ +m,a") = pm}.
We let Cy denote the dominant base p-alcove, i.e.
Co={zeX*(T®R|0< (x+n,a") <p,VacdT}.

Similarly, we define p-alcoves in X*(7") ® R and denote the dominant base p-alcove by C|.
We say that an alcove A (resp. a p-alcove C') is restricted (resp. p-restricted) if for all x € A (resp. x € C)
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anda € 7,0 < (z,a") <1 (resp. 0 < (z +n,a") < p). We define

W = {@ € W | @(Ap) is dominant}
Wit = {@ € W | @(Ap) is restricted}

and W :=WHT and W, = W;"7.
We use above notations for G = GSp,. For G = GL,,, we again add subscript n when we need to
and /V[71+n for W, W+, and W;t

distinguish them from the case of GSp,. For example, we write Wn, ﬁ//n*,

respectively.
2.1.5 Transfer map

We write std : GSpy — GL) for the standard representation. It induces a map between the tori % — T').
We also write the induced map between cocharacter groups by std : X,.(T) — X.(T)). Explicitly, we

have

(a,b;c)bﬁ)(a,b,c—b,c—a).

We also define 7 : X*(T') — X*(T,) to be a unique map which makes the following diagram commute

XH(I) —L— X*(T,)

| H

X.A(TY) =% X.(TY)

Explicitly, 7 maps (a,b;c) € X*(T) — (a+b+c,a+¢,b+ ¢, c) € X*(T,).

The map std also induces a map between W and W . We again denote by 7 : W — W, the compo-
sition std o¢ followed by the identification W = W ,. We have T (w)) = T (w)T(A) for all A € X*(T),
w € W. As aresult, T extends to a map between W and W4. Note that 7 is equal to the composition

W sy

The image of 7 in m can be interpreted as the invariant of a certain involution. Let w), € W, be the
longest element. Let E%Q = (X*(Ty) ®z Q) x Wy. Define © : @,a,Q — E4,a,Q to be the unique

group homomorphism satisfying

at+b+c+d

@(8) = wéswé, @(aa ba C, d) = (L 17 ]-7 ]-) - w(/)(aa bv & d)

fors € W, and (a,b,c,d) € X*(T,). Thenw € @ is in the image of 7 if and only if ©(w) = w.

Lemma 2.1.6. The map T : E — E respects Bruhat ordering, i.e. for all wy,ws € E

w1 < Wo inﬁifandonly if T(wy) < T(we) in W,.

Moreover, for A € X*(T), we have Adm(\) L Adm(T(\))®.

Proof. The first claim is the result of Kottwitz—Rapoport [KROO, Proposition 2.3]. The second claim is the
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result of Haines—Chéo [HC02, Proposition 5]. Note that in loc. cit., the set Perm(u) is equal to Adm(y) (for
the group GL,,) by Theorem 1 in loc. cit.. O
2.1.7 Genericity

For a character A € X*(T) (resp. a cocharacter A € X.(TV)), we define hy = max,ca{(\,a")}
(resp. hy = maxaea{(p71(N),a¥)}).

Definition 2.1.8 (cf. Definition 2.1.10 in [Le+a]). Let A € X*(T') be a character and m € Z>o.

1. We say that A is m-deep in a p-alcove C' if
nap+m < A+n,a’) <(na+1)p—m

foralla € @t where C = {A € X*(T) @R | nop < (A +n,aY) < (ng + 1)p,Va € o1}
2. We say A is m-deep if it is m-deep in some p-alcove C.
3. Forw = wt, € W, we say that w is m-generic if v — 7 is m-deep.
4. Forw = wt, € W we say that w is m-small if A, < m.
5. Forze WY, we say that 2 is m-generic (resp. m-small) if z* is m-generic (resp. m-small).

6. Fora = (a1, as,a3) € F3, we say that a is m-generic if
{a,az,a1 +ag, a1 —axfN{-m,—m+1,....m—1,m} =0

where {—m, —m + 1,...,m — 1,m} is considered as a subset of F using Z — F.

7. Let P(X1, Xo, X3) € Z[X;, X5, X3] be a polynomial and let R be a commutative ring. We say that
a € R? (resp. a = (a;)jes € (R?)7)is P-generic if P(a) mod p (resp. P(a;) mod p) is in (R/p)*
(resp. for all j € 7).

8. We define P,, (X1, X2, X3) € Z[ X1, X2, X3] to be the polynomial

Pm(Xl,Xz,Xg) = ﬁ(Xl — XQ — (L)(XQ — (L)(Xl + X2 + a).

a=1
Note that A — n € Cy is m-deep if and only if A (viewed as an element in Z3) is P,,-generic.

Lemma 2.1.9. If A € X*(T) is m-deep, then T (\) € X*(Ty) is m-deep in the sense of [Le+a, Definition
2.1.10]. Similarly, if w € W is m-generic (resp. m-small), then T (w) € VIN/4 is m-generic (resp. m-small).

Proof. This follows from a direct computation. O

2.2 Serre weights and Deligne-Lusztig representations

Let G be either GSp, or GLy,. Recall that we have a finite étale Z,-algebra O, and Gy = Reso, /z, G0, -
We remark that Go(F,,) = G(k) when O, = Ok, and Go(F,) = G(Or/p) when O, = O ®z Z, with F’

a totally real field in which p is unramified.
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2.2.1 Serre weights

A Serre weight of Go(F)) is an irreducible F-representation of G (F),). Recall the set of p-restricted domi-
nant weights

X)) ={ e X*(T) |Va" € AV, 0< (N, a") <p—1}.

For A € X7 (Z), we write L()) for the unique up to isomorphism irreducible G/ -representation of highest
weight \. Then F'()) := L(\)|g(r,) is a Serre weight. Moreover, we have the following bijection ((GHS18,
Lemma 9.2.4])

X{(T)
(p—m)XT)
A F())

= {Serre weights of Go(F,)} / ~

where X°(T) := {A € X*(T) | YVa € ®, (\,a") = 0}. For an integer m > 0, we say a Serre weight o is
m-deep if o ~ F(\) for some m-deep .

Let Xyeq(T) C X3 (T) be the subset of A such that 0 < (\,a") < p—1foralla¥ € AY. We say a
Serre weight o is regular if o ~ F'(\) for some A € X,q(T).

Let wy, = wot_,. We denote by R an endomorphism on X,cg(Z) given by A — wy, - A. It preserves
XO(T) and induces a map on the set of regular Serre weights by R(F()\)) := F(R(\)).

ot
Definition 2.2.2. Letw —n € CyNX*(T) and wy € W, . We define
Fl@ w) = F(@™ (@1) - (w —n)).

Consider the equivalence relation (wy,w) ~ (t, W1, w — v) forall v € X°(T). The map (w1, w) — Fg, o)
sends equivalent pairs to the same Serre weights. We call the equivalence class of (w1, w) as a lowest alcove
presentation of Fig, ). Letm € Z>o. If w — 7 is m-deep in Cj, we say that (w;,w) is m-generic lowest
alcove presentation of Fig, ..

2.2.3 Deligne-Lusztig representations

Let (s,u) € W x X*(T). By [GHS18, Proposition 9.2.1 and 9.2.2], we can attach a Deligne-Lusztig
representation R () of Go(F,). By [DL76, Proposition 10.10], it is a genuine representation of Go(F,,) if
(s, p) is a good pair (see [LLL19, §2.2]).

Definition 2.2.4. Let R be a Deligne-Luszitg representation and m € Z>.

1. We say that (s, — n) is a m-generic lowest alcove presentation of R if R ~ Rg(u) and p — 7 is
m-deep in C|,.

2. We say that R is m-generic if there exists a m-generic lowest alcove presentation of R.

Remark 2.2.5. If ;1 — 1 is O-deep in C), then (s, i) is a good pair. Moreover if  — 7 is 1-deep in C,, then
R () is irreducible by [DL76, Theorme 6.8].

The following Proposition gives the Jordan—Holder factors of the reduction of Deligne—Lusztig represen-

tations in generic cases.
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Proposition 2.2.6 (Proposition 2.3.6 in [Le+a]). Let (s, ;i — n) be a lowest alcove presentation of R (1) that
is 6-generic if G = GSp, and 2(n — 1)-generic if G = GL,,. For A\ € X{(T), F()\) € JH(Rs(n)) if and

only if there exists w = wt_,, € W such that
W (pp—n+st(v))) T wh- A

and’lﬂ~Q0T’lEhQ0.

Definition 2.2.7. Let w € W. Let v € X*(T) be an element up-to-X () uniquely determined by the
condition wt_,, € El. We define @ := wt_, mod X°(T).

By abuse of notation, we also let @ denote a representative in its class.

Definition 2.2.8. Let R ~ R.(u) be a Deligne-Lusztig representation that is 6-generic if G = GSp, and
2(n — 1)-generic if G = GL,,. By Proposition 2.2.6, we can define a function

Fr:W — JH(R,(n))
w = F(w, w1 (@) - (n—n+ s(@1(0)))).

Note that this does not depend on the choice of w. The map Fr depends on the choice of the lowest
alcove presentation, which will be clear in the context. So we suppress the dependence on it in the notation.
Serre weights in the image of F'r are called outer weights in [Le+20].

2.3 Tame inertial L-parameters

Recall that we take O, to be a finite étale Z,-algebra. It is isomorphism to [ ], . s, O, where S, is a finite
set and O, is the ring of intergers in some finite unramified extension F, / Q,. Following [Le+a, §1.8.2], we
have the following definitions.

Definition 2.3.1. Let A be a topolocigal O-algebra.

1. An L-homomorphism over A is a continuous homomorphism Wq, — LG(A). An L-parameter over
Aisa G (A)-conjugacy class of L-homomorphisms. When A is finite, any L-homomorphism extends

to GQP'

2. An inertial L-homomorphism over A is a continuous homomorphism Iq, — GY(A) which has open
kernel and extends to an L-homomorphism over A. An inertial L-parameter over A is a G (A)-

conjugacy class of inertial L-homomorphism.

3. An inertial type for K over A is a GV (A)-conjugacy class of homomorphisms Iz — G (A) which

has open kernel and extends to homomorphisms Wx — GV (A).

Note that a choice of an isomorphism F, ~ Q,, for each v € S, induces an embedding G, — Gq,
This induces a bijection between L-homomorphisms over A and collections of continuous homomorphisms
Wr, — GY(A) indexed by S,. Once we take G (A)-conjugacy classes and G (A)-conjugacy classes
respectively, the bijection is independent of the choice of isomorphisms. The same bijection holds for inertial

L-parameters and collections of inertial types for F;, indexed by S;,. In particular, when O, = Ok, the
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inertial L-parameter over A is equivalent to an inertial type for K over A. When A is finite, one can replace
Weil groups in the definition by Galois groups.

Let (s,u) € W x X*(T) and s’ = T(s), &’ = T(u). Then [LLL19, Definition 2.2.1] defines a tame
inertial L-parameter

(s, 1 +0') : Iq, = T4 (0).

By our choice of (s, i1'), this factors through TV (O) C T (0), and we let 7(s, uu + 1) denote the induced
tame inertial L-parameter valued in T (O).

Let F* denote the endomorphism pr~! on X, (T"), and d > 1 be an integer such that (F* o s71)% = p?.
By [Le+a, §2.4], we have the following explicit description:

d—1
T(s,p+n) = (Z(F o ¢(s)™1) (o(n+ 77))) (wa) : Iq, = T¥(0).
i=0
When O, = Ok, we also write 7(s, 1t + 1) to denote the corresponding tame inertial type for . By
following Example 2.4.1 of loc. cit., we write s, := 981 ...57—1 € W, r :=|s;|, and a0 .= (Z;;&(F* )
s 1 (u+mn))o € X*(T). Then we have

(s, u+n) = <pr’“¢(sr)"“ (¢ (aO))> (wpr) + Ik = TY(O).
k=0

Note that base change — ®» F and — ®» F induce bijections between tame inertial L-parameters over
O, E, and F. For a tame inertial L-parameter 7 over O or E, we write T for the corresponding tame inertial

L-parameter over F.
Definition 2.3.2. Let 7 (resp. 7) be a tame inertial L-parameter over E (resp. F). Let m € Z>.

1. A pair (s,u) € W x X*(T) is a m-generic lowest alcove presentation of T (resp T) if u is m-deep in
Coand 7~ 7(s, u+n) (resp T ~ 7(s, u + n)).

2. We say 7 (resp. T) is m-generic if there is a m-generic lowest alcove presentation (s, p) of 7 (resp. 7).

2.4 Inertial local Langlands for GSp,

In this section, we take G = GSp, and O, = Ok.

In [GT11a], Gan and Takeda established the local Langlands correspondence for GSp,, which we denote
by recgr. It is a surjective finite-to-one map that takes equivalence classes of smooth irreducible represen-
tation of GSp,(K) to GSp,-conjugacy classes of Weil-Deligne representations of Wy valued in GSp,(C).
Fix once and for all an isomorphism ¢ : C ~ Qp. This induces a correspondence recgT,, over Qp. We define
a normalized local Langlands correspondence by

recar,p(m) := recgr,, (T ® |sim|_3/2)
for any smooth irreducible Q ,-representation 7 of GSp,(K).
Let 7 be a tame inertial L-parameter with 1-generic lowest alcove presentation (s, ;). We attach a tame

type o(7) := Rs(u + 1) to 7. We often view o (7) as GSp, (O )-representation by inflation.



CHAPTER 2. TYPES AND WEIGHTS 18

Theorem 2.4.1. Let w be a smooth irreducible Qp-representation of GSp,(K) and T be a tame inertial type
for K with I-generic lowest alcove presentation (s, ). If o(T) C Tlasp,(0x)> then recar(m)|r, =~ T.

Moreover, Homap (Gsp,(05)) (0(T), Tasp, (0x)) is 1-dimensional.
Recall that given a pair (s, ) € W x X*(T), we defined (s,,a?)) € W x X*(T) by

f—1

sp=so0s1...57-1, 8% =Y ((F o5 (u+n))o.
7=0

For such (s,,a(?)), we can associate a pair (T, 8) := (T_, 05, a0 ) and the Deligne—Lusztig representation
€GSp, eTR% following [Her09, Lemma 4.2]. Using [DM20, Corollary 10.5 and Proposition 12.2] and [CGP15,
Proposition A.5.15(1)], one can see that eggp, eTR% is isomorphic to Rs(p + 1) as GSpy (k) ~ Go(F,)-
representation. We say that Rs(u + n) is cuspidal if the torus T is not contained in any proper Levi subgroup
of GSp,. Otherwise, it is called non-cuspidal.

Let P be the minimal standard parabolic subgroup of GSp, containing T with Levi factor M and the
unipotent radical N. By [DL76, Proposition 8.2] we have

RY = Ind (57 (R p).

Note that M decomposes into a product H;Zl M; (see [RSO07, §2.1]). We also write T = H:Zl T, where
T, C M; is a maximal torus and 6; = 6|r,. By Kiinneth Theorem, we have an isomorphism between

M (k)-representations
.
RT,P = ® R’JI‘“Mi'
i=1

We give explicit descriptions of T; and 6;. Let us write a0 = (a1, a2;as). Recall that we write Ty for the
diagonal torus of GLy and W5 for the Weyl group for GL5. Only in this section, we write Wo = {1, s}.

1. When s; = 1, wehave P = B,r =3, M; = T; = G, for 1 < ¢ < 3. Then 6; is given by
a; EX*(Gm).

2. When s, € {s1,525182}, we have P = S, r = 2, M7 ~ GLs and My ~ G,,. Then (Ty,6;) =
(Ts,0s,,) where = (a1,as2) (resp. (a1, —az)) in X*(T) when s, = s; (resp. s2s152), and 6 is
given by a3 € X*(G,).

3. When s, € {s2, 815251}, we have P = Q, r = 2, M, ~ G,,,, and My ~ GL,. Then 6 is given by
aq (resp. az) in X*(G,,), and (Ts, 62) = (7%, 6s,,) where p1 = (ag + a3, a3) (resp. (a1 + a3, a3)) in
X*(T,) when s, = s (resp. $15281).

4. When s, € {s152, S251,wo}, we have P = GSp,,. This is the only case that R% is cuspidal.

Let 7 and o(7) be as in Theorem 2.4.1. When o (7) is non-cuspidal, we can use the above data to describe
7 as a parabolically induced representation.

Proposition 2.4.2. Let 7 be a 1-generic tame inertial L-parameter such that o(7) is non-cuspidal. Let 7

be a smooth irreducible Q,,-representation of G(K) such that o() C 7|asp,(0x)- Following the above
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notations, there exists a M;(Og ) K * -representation R%'i extending €y, er, R%; such that

T 1GSpy(K) - M;(K) =0,
== Indpi) <® ndyr; (05K R?R:) '
i=1

Moreover, T contains o(T) with multiplicity one.

Proof. Let P C GSp,(Ok) be the parahoric subgroup defined as the inverse image of P(k) C GSp,(k).
We let o and oy denote the inflation of e pqu%, p to P and M (Ok) respectively. By [Mor99, Lemma
3.6], we have an isomorphism 7% ~ (7)™ where 7y is the unnormalized Jacquet module. Since o(7) C
T|asp, (Ox)» We get anr = TN |ar(oy)- The pair (M (Of ), oar) is M (K )-type. This implies that there is an
isomorphism of M (K )-representations 7 — 7,,, for a supercuspidal representation of M (K)

r
— 3 M;(K) Do
Topy = ®lndMi((’)K)K>< RTiJWi
i=1

where ﬁ% is a M; (O ) K * -representation extending €y, er, R%’; (see [Mor99, Proposition 4.1]). By Frobe-
nius reciprocity, we get a non-zero map

GSp,(K)

™ IndP(K) Toa -

This is an isomorphism by [GT11b, Lemma 5.1.(a), 5.2.(b)] (for P = S or @Q)) and [Box+21, Proposition
2.4.6] (for P = B).

Let GSp,(Ok)1 := ker(GSp,(Ok) — GSp,(k)). Also we let 75 be the M (Ok ) K * -representation
extending ojs by letting K™ act by the central character of m. Then the multiplicity one assertion follows

from
77 ~ HomGSp4(k)(o(T),WGSp‘l(OK)l) ~ %% o~ ()M (TUM)‘N’M ~ HOIHM(K)(TUM,TUM)

where the second isomorphism is induced by Frobenius reciprocity for finite groups, the fourth isomorphism
exists because my =~ 7,,, admits a central character, and the last isomorphism is induced by the Frobenius

reciprocity for compact inductions. O

Now suppose that o(7) is cuspidal. We write o(7) for the G(Og )K *-representation extending o (7)
by letting K act by central character of 7. By [DR09, Lemma 4.5.1], we have an isomorphism of G(K)-
representations

. G(K ~
T~ deEOi)KX (a(7)).

We prove Theorem 2.4.1 using an explicit description of the local Langlands correspondence. In the
non-cuspidal case, we use the explicit theta correspondence in [GT11b]. In the cuspidal case, we use the
explicit construction of the local Langlands correspondence for tame regular semisimple elliptic Langlands

parameters in [DR09]. Note that the compatibility between the local Langlands correspondence for GSp, of
DeBacker—Reeder and Gan—Takeda is proven by Lust ([Lus13, Theorem 1.1]).
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2.4.3 Explicit theta correspondences

In [GT11b], Gan-Takeda established theta correspondences between the group GSp, and various similitude
orthogonal groups GSO2 2, GSO3 3, and GSOy4 . This was used to prove the local Langlands conjecture for
GSp, ([GT11a]). The parabolically induced representations of GSp, has a non-zero theta lift to GSOs3 3.
The group GSOs3 3 admits an accidental isomorphism

GSO&g ~ (GL4 X GLl)/ {(2,272) | S GLl)} .

Using this isomorphism, we view a representation of GSO3 3 as a representation of GLy x GL;.
Let 7 be a irreducible smooth C-representation of GSp, (K). If the theta lifting of 7 to GSO3 3 is given
by (non-zero) IT X y, the L-parameter of IT X x (which is valued in GL4(C) x GL; (C)) factors through the

map
GSp,(C) 2™ G1,,(C) x GL;(C)

which provides the L-parameter recgr () of 7.
In the following Theorem, we write ¢ for the L-parameter attached to a smooth irreducible Qp—representation
7 of GLo(K) by [HTO1] conjugated by . We write w., for the central character of 7.

Proposition 2.4.4. Let m be a smooth irreducible Qp—representation of GSp,4(K).

1. (P = B the Borel subgroup) If m ~ Indg?%‘)(m (x1, X2; X), then

recar p(m) = xaxax| | > @ xaxl T2 @ xax| Tt @ x : Wk — T(E) € GSpy(E).

2. (P = Q the Klingen parabolic) If m ~ Indg?%(m(x ® T), then

recar p(m) = (;57|~|71/2 &) <;57)<|~|75/2 : Wk = Mg(E) C GSpy(E).

3. (P = S the Siegel parabolic) If m ~ Indg(s%(K)(T ® X), then

recgrp(m) = X @ ¢Tx\~|73/2 @ xw || 7% Wi = Mg(E) C GSp,(E).
Proof. This is a special case of [GT11b, Proposition 13.1] (vi), (iv), (v) (for (1), (2), (3) respectively). Note
that the induction in loc. cit. is normalized. O
Proof of Theorem 2.4.1 in the non-cuspidal case. This follows from Proposition 2.4.2 and 2.4.4, and the in-
ertial local Langlands correspondence for GLs and GL; (e.g. [Le+a, Proposition 2.5.5]). O

2.4.5 Depth zero regular supercuspidal local Langlands

Let 7 ~ 7(s, u+n) be a 1-generic tame inertial type for K over E and ¢ : Gg — GSp,(FE) be a continuous
representation extending 7. We also assume o (7) cuspidal. After taking conjugation, we can assume that the
image of Ik is contained in T'(F) and ¢ (Frobg) € Ng(T'). We can write ¢)(Frobg) = wt for a unique
w € W and some ¢t € T'(E). Note that ¢ gives a well-defined class in T'/(1 — w)T, and thus sim(?) is
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independent of the choice of ¢. By the construction of 7, we must have w = ¢(s, ). The cuspidality of o (7)
implies w € {s182, 8251, wp}. Then 1) is TRSELP (tame regular semisimple elliptic L-parameter) in the
sense of [DRO9, §4.1].

For any TRSELP 1), DeBacker—Reeder constructed the L-packet of depth-zero supercuspidal representa-
tions associated with it. These representations are distributed among the pure inner forms of GSp,. The pure
inner forms are parameterized by Galois cohomology H'(K,GSp,). Since H*(K,Sp,) = 1 (because Sp,
is simply-connected) and H*(K, G,,) = 1, we have H* (K, GSp,) = 1. Thus, all these representations are
of GSp,.

Now we explain the construction in [DR09, §4] in a special case. The L-packet of ¢, denoted by II(1)),
is parameterized by Irr(Cy) the (finite) set of irreducible representations of Cy, = mo(Zg(Im)). One can
check that Cy, is trivial when s; = 5152 or s2s; and is isomorphic to Z /27 when s, = wy. In both cases,
we simply take the trivial representation of C'y. Then the corresponding element in II(¢)) is given by

.. 1G(K) 0
de(OK)KX Rt

where (T, 0) = (Ts,, 0, a0), E%|G(OK) ~ egerRY, and §%|Kx sends p to sim(?).

Proof of Theorem 2.4.1 in the cuspidal case. Weknow thato(7) C 7|g (o, ) implies that  ~ indgggl){)KX ((1))
for some & (7) extending o (7). Let w, be the central character of 7. By the above construction, 7 is con-
tained in the L-packet of ¢ such that ¢|7,. ~ 7 and sim(¢) (Frobg ) = w,(p). The multiplicity one assertion

follows from

Home(0,)(0(7), Tlaox)) = Homeg oo k< (0(T), Tlgox)rx) =~ Homegg)(m, )

where the first isomorphism exists because 7 admits a central character, and the second isomorphism follows
from the Frobenius reciprocity for compact inductions. O

2.4.6 Serre weights of a tame inertial L-parameter

We define the conjectural set of Serre weights associated to a tame inertial L-parameter following [GHS18,
Definition 9.2.5].

Definition 2.4.7. Let p be a tame inertial L-parameter over F. We define W7 (p) to be the set R(JH(7([p]))).
Definition 2.4.8. Letp ~ 7(s, 1) be a 6-generic tame inertial L-parameter over F. We define a function
Fy W — W (p)
w = R(Fy(z)) (w))-
We define W,y (5) to be the image of F;; and call its elements as obvious weights of p.

Note that W, (p) does not depend on the choice of the lowest alcove presentation of  and coincides
with W, () defined in [Le+a, Definition 2.6.3]. In loc. cit., F5(w) is called as the obvious weight of p

corresponding to w.
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2.4.9 Transfer to GL,

Recall that we have a map T defined in §2.1 which maps W to W, and X*(T) to X*(T,). Using this, we
define the rransfer of Deligne—Lusztig representations and Serre weights of Go(F,) to (GL4)o(F,).

Proposition 2.4.10. The map T induces a well-defined assignment from Deligne—Lusztig representations
(resp. Serre weights) of Go(F,) to the Deligne—Lusztig representations (resp. Serre weights) of (GL4)o(F,)
given by

Ro(p) = T(Rs(p)) = Ry (T (1)
F(A) = T(F(N) = F(T(\).

Suppose that 1 —n € C is 6-deep. Then F(\) € JH(Rs(p)) implies T(F(N)) € JH(T (Rs(w))). The
converse is true if furthermore p. — 1 = (a;j,b;;¢;)jes and |a; — p/2| > 3/2 for each j € J.

Proof. The first claim for Deligne—Lusztig representations follows from the fact that the map 7 respects the
Weyl group action on the character lattice and p-dot actions. For Serre weights, it follows from that 7~ maps
X3(T) and X°(T) into X;(T,) and X°(T,) respectively.

Suppose that F'(A) € JH(Rs(u)). By Proposition 2.2.6, there exists w € W and w € El such that

w 1 w and

FO\) = F (@@ (1 — 7+ s7(@(0)))) € JH(R, ().
Let T (wy,) = w),. By applying 7 to the above equation, we have
T(F(N) = F (@, "T (@) - (T (1) =0 + T (sm(@1(0))))) -

Since two ordering < and 1 coincide on Ei we have 7 (@) 1 T(w) by Lemma 2.1.6. Then the above
equality implies 7 (F(\)) € JH(T (Rs(u))) by Proposition 2.2.6.

For the converse, suppose 7 (F(\)) € JH(T (Rs(x))). Then there exists w’ € W, and @' € El such
that @’ 1 @’ and

T(F(N) = F (@), '@ (T () — o' + T (s)m(@'~(0)))) .

This shows that w, '@’ - (T (1) — 1’ + T (s)m(@'~1(0))) is fixed by © (defined in §2.1). Suppose that @’ is
fixed by ©. Then @’'~1(0) is fixed by ©, and simple computation shows that @’ is fixed by © as well. Thus
w' =T (w) and W = T (w) for some w € El and w € W. As in the previous paragraph, this shows that
F(V € (R, (). N

We finish the proof by showing that @’ is fixed by ©. Let wy € W be an element such that A € wy - C,,.
Then we can write W’ = T (w)o’ for some &' € Q,. Suppose that §’ is not fixed by ©. Since Q4/7 (£2) is

cyclic group of order 2, we can assume that & is the generator of 4 sending (a, b, ¢, d) to (b, ¢, d,a — p) for

at least one j € J. Let us write u — n = (a;,bj; ¢j)jeq and T (s)m(@w' ') = (z,y;, 2j,w;)jes. Then

(6/ . (T(M - 77) + T(S)’f((ﬂ)\/_l)))j = (5; . (aj + bj + Cj + Zj,0a; + Cj + yj,bj + Cj + Zj,Cj + U}j)

:(aj+cj+yj,bj+cj+zj,cj+wj,aj+bj+cj+xj—p).
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Since & - (T(p — n) + T (s)m(w'~1)) is fixed by ©, we have 2a; — p = z; + w; — y; — x;. However,
|zj + w; —y; —x;| < 3 by [LLL19, Remark 4.1.4]. This leads to a contradiction and ¢’ is fixed by ©. [

Example 2.4.11. The condition |a; — p/2| > 3/2 in the above Lemma may seem dubious but it is necessary.
For example, let K = Q, and (s, 0 — 1) € W x X*(T) be a lowest alcove presentation of R,(u) where
s=e p—mn = (ab;c). We take a = (p — 1)/2. Let w’ € Wy be the element sending (z,y, z, w) to
(y, z,w,x). Then W’ = w't_, where v = (1,0,0,0). Let

Noi=wy o - (T(p) —n' +v)
=aw, ' T(a,a—b;b+c—a)

so that F'(\') € JH(T (R.(1))). However, one can easily check that
F(w, " (a,a—b;b+c—a)) ¢ JH(R(u)).

Corollary 2.4.12. Let p ~ 7(s, ) be a 6-generic tame inertial L-parameter. Recall the set W” (std(p))
defined in [Le+a, Definition 2.6.1] Suppose that 1 — n = (a;,b;;¢j)jer and |a; —p/2| > 3/2 for each
7€ J. Then

T(W:(p)) = W (std(p)) N {T(F(N) | A € X7 (D)}.

The following Corollary shows the compatibility between the inertial local Langlands correspondence
and the transfer of Deligne—Lusztig representations.

Corollary 2.4.13. Let 7 be a smooth irreducible Q,-representation of GSp,(K) and 1) = recar (). Let 11
be a smooth irreducible Q,,-representation of GL4(K) corresponding to std(v)) under the local Langlands
correspondence of [HTO01] (conjugated by t). Let T be a 1-generic tame inertial L-parameter. If o(1) C
Tl asp, (0x). then T (o (7)) C gL, 0k)-

Proof. By Theorem 2.4.1, we have |, ~ 7. Then the claim follows from the construction of 7 (c(7))
and [Sho18, Theorem 3.7 (2)]. (Note that although the local Langlands correspondence used in loc. cit. is

normalized, it only differs by unramified twist.) O

Remark 2.4.14. The converse of the above Corollary is not true, as the L-packet of ) can have two elements
(e.g. if Y|, ~ 7(s, 1) and s; = wy).

2.5 Combinatorics between types and weights

Let G be either GSp, or GL,,. We first introduce some notations and definitions.

Notation 2.5.1. Let (s, ) be a lowest alcove presentation of a Deligne-Lusztig representation R (resp. a
tame inerital L-parameter 7). We let w(R) (resp. w(7)) denote t,4,s € E If 7 is another tame inertial

L-parameter with a lowest alcove presentation (s', '), we write

w(p, ) = w(r) " w(p) € W.
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Definition 2.5.2. We call an element of X *(Z) as an algebraic central character and an element of X*(Z) /(p—

m)X*(Z) as a central character.

Note that X*(Z)/(p — m)X*(Z) ~ Hom(Z(O,/p), F*) which justifies the term central character.

Recall that we have an isomorphism
Q~W/W, ~ X*(Z2). (25.3)

If o is a Serre weight with a lowest alcove presentation (w;,w), then the central character of o can be
described as the image of ¢,,_,,w; under (2.5.3) composed with X*(Z) — X*(Z)/(p—m)X*(Z). Similarly,
if R is a Deligne—Lusztig representation with a lowest alcove presentation (s, ), then the central character of
R is given by the lift of the image of w(R) under (2.5.3) composed with X*(Z) — X*(Z)/(p — m)X*(Z).

For a dominant character A € X*(T), let W () /o be the unique up to isomorphism irreducible algebraic
G o-representation of highest weight A. Let V() be the restriction of W () /0 to Go(Zy). We define a type
(of Go(Zy)) to be a pair (A + n, 7) where A € X,.(T'”) is a dominant cocharacter and 7 is a 1-generic tame

inertial L-parameter. To a type (\ 4+ 7, 7), we associate a locally algebraic representations of G (Z,)
g\ 1) =0 (1) ®o V(671 (N))-

Let W(A) /r be the dual Weyl module of highest weight A for the algebraic group G ;& and W () be the
restriction of W () /g to Go(F)). Note that V(\) @0 F ~ W(A).

Definition 2.5.4. 1. Let (w;,w) be a lowest alcove presentation of a Serre weight o. We say (wq,w) is
compatible with { € X*(Z) if the image of t,,_,w; in X*(Z) under (2.5.3) is equal to (. We also say

that o has algebraic central character ¢ (with respect to (1, w)).

2. Let (s, ) be a lowest alcove presentation of a Deligne-Lusztig representation R (resp. a tame inertial
L-parameter 7 over E). Let A € X*(T'). We say (s, 1) is A-compatible with ( € X*(Z) if the image of
tatutys in X*(Z) under (2.5.3) is equal to (. When A = 0, we also say that R (resp. 7) has algebraic

central character ¢ (with respect to (s, 1))

3. Let (s, 1) be a lowest alcove presentation of a tame inertial L-parameter 7 over F. Let A € X*(T)).
We say (s, pt) is A-compatible with ( € X*(Z) if the image of t)t,,s in X*(Z) under (2.5.3) is equal
to ¢. (Note that this differs by ¢, from item (2); see [Le+a, Remark 2.4.2].) When A = 0, we also say

that T has algebraic central character ¢ (with respect to (s, j1)).

4. We say that a lowest alcove presentation of tame inertial type 7 over E (or 7 over F) is (A-)compatible
with a lowest alcove presentation of a Serre weight (or Deligne—Lusztig representation) if the former is
(A-)compatible with ¢ € X*(Z) and the latter is compatible with (.

Remark 2.5.5. A choice of algebraic central character lifting the central character of Serre weights or
Deligne-Lusztig representations corresponds to a choice of lowest alcove presentations (see [Le+a, Lemma
2.2.4 and 2.3.2]). Later, we will study objects whose constructions depend on choices of lowest alcove

presentations and their connections. The (\-)compatibility is a notion to make such choices consistent.

Let A € X*(T') be a dominant character. We have the set of admissible pairs defined in [Le+a, §2.1]

AP+ ) 1= {(@1, @) € (W) x W)/X(T) | @ 1 a7 ' |



CHAPTER 2. TYPES AND WEIGHTS 25

Proposition 2.5.6 (Proposition 2.3.7 in [Le+al). Let A\ € X*(T') be a dominant character. Let m be an
integer such that m > max{hy + 3,6} if G = GSp, and m > max{hy +n — 1,2(n — 1)} if G = GL,,.

For m-generic Deligne—Lusztig representation R, we have the following bijection

AP\ + 1) ~ JH(R @r W(\))

(w1, w2) = Flg, aryas )

Moreover; every Jordan—Hdélder factor are (m—hy—3)-deep and the lowest alcove presentations (w1, w(R)iw, * (0))

of these Serre weights are A-compatible with the lowest alcove presentation of R.

Remark 2.5.7. Suppose that we have A = 0 in Proposition 2.5.6. By [Le+a, Proposition 2.1.6], the condition

wy T @;1@2 is equivalent to ws T wpw;. Let us write
v = (@) - (1 —n + i3 (0))
for (wy,w2) € AP(n) so that Fla, arya; ' 0) = F(v). Then
w (@) - (p —n + sy (0)) T W - v

as in Proposition 2.2.6.

Proposition 2.5.8 (Proposition 2.6.2 in [Le+a]). Let m be an integer such that m > 6 if G = GSp, and
m > 2(n— 1) if G = GLy,. Let p be a tame inertial L-parameter over F with a m-generic lowest alcove

presentation. Then there is a bijection

— e -+ ~ — ~
{(w,w2) € (W, x W )/XT) | wy t @} > W’ (p)
(@0, @2) = Flg a@ma; o)

Moreover; every Jordan-Holder factor are (m—3)-deep and the lowest alcove presentations (i, w(p)w, *(0))

of these Serre weights are compatible with the lowest alcove presentation of W(p).

Definition 2.5.9. Let o and « be Serre weights. We write o 1 & if there exist A\, A’ € X7 (T) such that
o~ F(\),k~F(\),and A T X.

Lemma 2.5.10. Let p be a tame inertial L-parameter over F that is 6-generic if G = GSp, and 2(n — 1)-
generic if G = GL,. Let o,k € W (p) be Serre weights. Then o 1 k if and only if o0 ~ F, . 10) and

(w,w(p)wy

~ ~ —~+ ~ —~+ ~ ~ .~
K~ F(a,@(ﬁ)qj;l(o))for w,w € W, and wy € W such that we T w 1T @'.

~ o~ —~+ - —~+
Proof. Suppose that o ~ F(ﬁﬂ;(ﬁ)%_l(o)) and Kk ~ F(w,@(ﬁ)aé_l(o)) for w,w’ € W, and ws,wh € W

such that wo T w and w) 1 w’. By changing wy up to X°(T) (and w accordingly), we can guarantee that
7N (Wo) - (W(p)wy 1(0) — n) and 7= (@h) - (W(p)why *(0) — n) are in the same W ,-orbit (under the p-
-1 1

dot action). Let wy = wt, and w5 = w't,. Then (pr~' — 1)v = (pr~ ' — 1)’ mod Ag. By applying

(1 +pr~t + ... (pr~1)"1) to this equation where r is an integer such that 7" = id, we deduce that
v =1 mod Ag. Then pr~1(v) — w(p)v — n and pr~1(v) — w(p)v’ — 1 are in the same W ,-orbit. Since
they are in the same p-alcove C,, + 7~ (pv), they have to be equal. Thus, we conclude that v = v/, which

implies that wo = w). Then w 1 w’ follows immediately from o 1 k. O
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For the remaining of this section, we let G = GSp,. The following lemmas will be useful in proving

main results in §6.

Lemma 2.5.11 (Corollary 2.6.5 in [Le+a]). Let A € X*(T) be a dominant character. Let p and T be tame
inertial L-parameters over ¥ and E, with A-compatible 6-generic and max{6, hy+3}-generic lowest alcove

presentation respectively, such that w(p,T) = tw=1(A4n) Jor some w € W. Then we have

JH@(A, 7)) N W (p) = {(F5(w))} -

Lemma 2.5.12. Let A € X (T) be a 12-deep dominant character. Let p be a tame inertial L-parameter over
F with a 12-generic lowest alcove presentation (sz, pi5). For each s € W, we consider a tame inertial type
T(s,Wp, - A +n). Suppose that for each s € W, 7(s,wp, - A + n) admits a lowest alcove presentation such
that w(p, T(s, Wy, - X +n)) € Adm(n). Then F(\) € W’ (p).

Proof. This can be proven as [LLL19, Lemma 4.1.10]. O

Remark 2.5.13. Let (s, + n) be the lowest alcove presentation of 7(s,w;, - A + 7)) as in the previous
Lemma. We remark that the condition w(p, 7(s,wy, - A + 1)) € Adm(n) implies that the images of st
and szt under (2.5.3) are equal, or equivalently, u; — p1 € A (cf. the condition (P3) in [LLL19, §4.1]).

This condition uniquely determines the lowest alcove presentation (s, i + 1) of 7(s, wy, - A + 1) (if it exists).

Lemma 2.5.14. Letp : Iq, — LG(F) be a 6-generic tame inertial L-parameter. Let o € W' (p) be a Serre

1~ ~ . ~—+ e~
weight with a lowest alcove presentation (W, '@, ws) for some (W, W) € W, x W such that Wy 1 @, .
Suppose that T is a tame type with a 6-generic lowest alcove representation such that w(p, T) = W~ Lwois.
Then,

1. 0 € JH(a (7)), and
2. ifk e W (p)NJH(G(7)) and o 1 K, then o = k.

Proof. Since w(p)w, *(0) = w(r)w *(0), we have ¢ = F(ﬂ;;l,&;7ﬁ;(7_)m,1(0)) and F(m,jlm,m(r)ﬁfl(o)) S
JH(7 (7)) by Proposition 2.5.6. Suppose that & € W’ (p) N JH(7(7)) and o 1 x. Let (5,w) be a lowest
alcove presentation of £ compatible with p. By Proposition 2.5.6, there exists 51 € W+ such that 3 T @;13'1
and w = @(7)3; ' (0). By Lemma 2.5.10, o 1 & implies that 3; = @ and @, '@ 1 3. By [Le+a, Proposition
2.1.6], 15,:1{[1 1 §is equivalent to wy s T w and 5 1 ﬁ;lgl is equivalent to 51 = w T wS. Thus s = G,:l@

and o = k. O



Chapter 3

The theory of local models

In this chapter, we generalize the theory of local models in [Le+a] to the group GSp,. Note that when we
write GSp, in this chapter, we mean the dual group GSp; . In particular, the set of coroots &V of GSp, is
identified with a set of roots of GSp, by the duality isomorphism ¢. If ¥ € ®V, we let U,v C GSpy
denote the root subgroup associated to the root (') of GSp; . In other words, UY C GSp) is a subgroup
such that U,v ~ G, and tut ™! = ¢(a¥)(t)u forany t € TV and u € U,v.

We let G = GSp, for the remainder of this thesis.

Let X = A} be an affine line with coordinate function v. We denote by X, = Spec Z the zero section
of X and X° = Spec Z[v,v~1]. We often write ¢ : Spec R — X to denote Z[v]-algebra R such that v is
mapped to t € R.

3.1 Global affine Grassmannians

Let G be the Neron blowup of GSp,, x in B, x along X defined in [MRR, Definition 3.1]. By Theorem 3.2
of loc. cit., it is a smooth affine group scheme over X with connected fibers. For ¢ : Spec R — X with ¢
regular in R, the set of R-points is given by

G(R) ={g € GSpy(R) | gmod t € B(R/t)}.

There is a morphism of X -group schemes G — GSp,, x. If g € G(R), we denote by g its image in GSp, (R).
We also have a similitude character sim : G — G, sending g to sim(g).
The base change G x x X is isomorphic to GSpy/xo and the base change along @ : SpecO — X is

isomorphic to standard Iwahori group scheme Z whose R-points for any O-algebra R are given by
Z(R) = {g € GSp,(R[v]) | g mod v € B(R)}.

In particular, G X x - Spec O coincides with the group scheme constructed in [PZ13, Corollary 4.2] for GSp,
and 7 (see also [MRR, Example 3.3]).
We also define a functor L™ M whose R-points, for ¢ : Spec R — X, are given by

LTM(R) := {g € Lie GSp,(R[v — t]) | g is upper triangular modulo v}.

27
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Let G4 be the Bruhat-Tits group for GL4 defined as in [Le+a, §3.1]. Note that the map std : GSp, — GL4
induces a morphism X -group schemes G — G, (see [MRR, §2.4]) which we denote by std as well. It is easy
to see that std : G — G, is a closed immersion.

We write LG for the loop group and LG for the positive loop group of G. For ¢ : Spec R — X, their

R-points are given by

LG(R) = G(R((v—1))
LTG(R) = G(R[v — ])

where we consider R[v — t] and R((v — t)) as Z[v]-algebra by sending v to v. It is known that LG is

representable by a (not finite type) group scheme and LG is representable by an ind-group scheme.

Remark 3.1.1. When R is Noetherian, v is regular in both RJv — t] and R((v — t)). Thus we have the

following description:

LG(R) = {g € GSpy(R((v — 1)) [ g mod v € B(R((v —1))/v)}

LTG(R) = {g € GSp,(R[v—1]) | g mod v € B(R[v —t]/v)}.
We define Grg, x to be the fpqc quotient sheaf L+G\LG. By [PZ13, Proposition 6.5], Grg x is rep-
resentable by an ind-projective ind-scheme. By the properties of G, the generic fiber Grg x xx XU is
isomorphic to Grgsp, Xz X Y, a constant familiy of affine Grassmannian for the group GSp, over X°, and

its special fiber Grg x x x X is the affine flag variety F1 := 7\ GSp,.
Letd € Z and h € Zx>(. We define subfunctors LQSim:d, Lgsim=d.sh - G by

LG*™=4(R) = {g € LG(R) | sim(g) € (v —t)*(R[v —t])*}

L MR —t]])}.

sim=d,<h _ sim=d —=
LG (R)—{geLQ (R)17€ (g

Both of them are stable under left multiplication by LG and induce fpqc quotient subsheafs

Grgy == LYG\LG¥m=4<h € Grg? = LYG\LG" ™= C Grg x.

The sheaf Gr?f}zdéh’ is representable by a projective scheme over X and Grgf}:d = lim, Grgf&:d’gh.
Our next goal is describing affine open charts of the projective scheme Grsg”g(:d’gh. We define the nega-

tive loop group to be a subfunctor L~~G C LG such that for ¢ : Spec R — X,

g € GSp, (R [ﬁ])
L™"G(R)=<¢g€G(R(v—1)) gmod = € U(R)
gmod -2 € B (R [UL] / (ﬁ))

Lemma 3.1.2. The multiplication map
LTGxx L~ =G — LG

is formally étale in the sense of [Le+a, Definition 3.2.4], and so is the map L~ ~G — Grg x.
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Proof. Since this map is a restriction of a monomorphism LGy X x L™~ G4 — LG, ([Le+a, Lemma 3.2.2)),
it is a monomorphism. Then we can show that it is formally étale following the argument in [Le+a, Lemma
3.2.6] using a version of [Le+a, Lemma 3.2.3] for our setup and the formal smoothness of L*G and L=~G.
Note that formal smoothness easily follows from the smoothness of G. O

Let Z = wt, € W". We define (Z) to be the subfunctor of LG given by

glv—1)7" € GSpy (R[]

UEZ)(R) =1 g € LG(R) gv —t) 7w mod 2 étﬁ
glv—1)7" mod ;% € B(R[;5]/(3%))

v—t

Lemma 3.1.3. The subfunctor U(Z) C LG is stable under left multiplication by L~~G and is left L~ G-

torsor. The natural map U(Z) — Grg x is monomorphism.

Proof. The first claim follows from the definition of /() and the second claim follows from Lemma 3.1.2.
O

For d = sim(v) and h € Zx, we define U(2)$"™ =" to be the base change U (Z) x g LGS'™=%<"_ The

following Proposition shows that /(Z)*™ =" is represented by a finite type affine scheme over X.

Proposition 3.1.4. For a Noetherian Z[v]-algebra R, U(Z)*™ <" (R) is the set of matrices A € GSp,(R[(v—
t)*1]) satisfying:

e Forl1 <i,j </4,

vj=bi>i—bicwr(s)

ij = v > cijp(v — 1)

k=—h

A

and ¢, (5 = 1 where (v{,V}, V5, vy) = std(v) and w' = std(w),

350wl (5>
* sim(A) = sim(w)(v — t)<.

Proof. This follows from the fact that U (2)s"™ <" = U (std(Z))"<" x g, LG and Proposition 3.2.8 in
[Le+a] (where Uy (std(Z))9t<" denotes the affine chart defined in §3.2 of loc. cit.). O

oge i im=d,<h . . .
Proposition 3.1.5. The map U(Z)*™=h — Grg'y =his an open immersion.

Proof. We claim that I/(2)5™=h — Grsgif}:d’gh is formally étale. Since a formally étale monomorphism
between finite type schemes is an open immersion ([Le+a, Remark 3.2.5] and [Stacks, Tag 025G]), this
completes the proof.

Let A be an Artinian local ring with residue field k. Suppose we have the following commutative diagram

Speck — U(Z)smsh

|

Spec A —— Grsgifr;(:d’gh.

We write ¢ € k and ¢t € A for the image of the coordinate v of X. Since k and A are Noetherian, we can

interpret the image of Speck (and Spec A) in U(Z) as a matrix g, € GSp(k((v — ¢))) satisfying certain


https://stacks.math.columbia.edu/tag/025G
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conditions. We claim that there exists g4 € U(Z)(A) lifting gi. Since gi(v — )™ € GSpAk[ﬁ]), we can
find g4 € LG(A) lifting g, and g4 (v — )™ € GSp,(A[-1-]) by the smoothness of GSp,. The set of such

v—t

ga is Lie GSp, (m4[-L-]) (v — t)”-coset. To show that there exists ¢y € U(Z)(A) lifting gx., we need to find

v—t

g’y satisfying two conditions:

S

))-

ga(v—1t)""w ! mod % € U(A), g4y(v—1t)"" mod Lt € B(A|
v

v — — v—t" v—1t

Thus, we need to find N € Lie GSp,(m4[-L]) such that

1 v
v—1t

1 —
ga(v —t)""w™t + Nw™! mod P U(A), ga(v—1t)""+ N mod % € B(A]

The existence of such N follows from the surjectivity of the quotient map

v

Lie GSp,(ma]

©1) = Lie GSp, (ma) x Lie GSpy(ma[ /("))

v — v—t v—t

Once we know that U(Z)(A) # 0, we can use Lemma 3.1.2 to find Spec A — U(Z) which lifts g, and

when composed with U/ (Z) — Grg x provides the A-point of Grsgifg(:d’gh given in the above diagram. Then
it has to factor through U (Z)*™ =", Thus ¢/(2)s™=h — Grsgin)’(:d’gh is formally étale. O

3.2 Geometry of universal local models

We introduce universal local models and discuss their basic properties.

3.2.1 Schubert varieties

Given a dominant cocharacter A € X, (T"), we denote by s, a section X — Grg, x induced by the element
(v —t)* € LG(R) for any Z[v]-algebra R. A global Schubert variety Sx () is defined as the minimal
irreducible closed subscheme of Grg x containing the section sy and stable under the right multiplication of
L*G (cf. [Zhu14, Definition 3.1]). The map Sx () — X is proper. We also write Sxo(\) = Sx (\) x x X°.
As Grg x Xx X° =~ Grasp, Xz XY, Sxo()) is the constant family of the Schubert variety in Grgsy,, for A
over X0,

Let Conv(\) be the convex hull of the subset WA C X..(TV). A open Schubert cell S°(X) is defined as
an open subscheme

S%(A) = Sx(M)\ Uneconviyy,vgwa Sx(A) € Sx(A).

Again, the base change S%,(X) = S%(A) x x X is the constant family of open Schubert cells of Grgsp,
for \ over X0,

We have amap LTG — Grg x given by the orbit map g — s,g. Note that it factors through a subscheme
Grsgif}:d’gh with d = sim()\) and h sufficiently large. The stabilizer subgroup scheme LTG, C LTG of sy

is given by

L*GA(R) = L*G(R) N Ad((v — ) *)(L*G(R))
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fort : Spec R — X. Thus we have a monomorphism
LTG\LTG — G ="

whose scheme-theoretic image is S)(X). Over X°, we have an isomorphism (LTG\\L*G) xx X° ~

%o(A). Note that there is a map from L*Gy xx X° to Py x X sending g — g mod (v — ¢) where
P, C GSp, is a parabolic subgroup associated with A and containing B. Thus, we have a natural map
(LTG\L*TG) xx X° — P\\GSp, xz X" given by g — g mod (v — t). When it is composed with the

previous isomorphism, we get a map
TN : Sg(o ()\) — (P,\\GSp4) Xz XO.

3.2.2 Universal local models

For convenience, we let std : A3 — A% be the morphism sending (a1, as, a3) to (a1, az,as — az,as — a).
Note that this matches with the description of std : X, (TV) — X, (T)).
We define a subfunctor LGY of LG x 7 A® given by

d 1
LGY(R) = {(g,a) |g € LG(R),ac A?’,vd—gg—l + gDiag(std(a))g ' € HL+M(R)} .
for t : SpecR — X. Since LGV is stable under left multiplication by L*G, it defines a closed sub-ind-
scheme GrZX = LYG\LGV C Grg, x xz A3 which is ind-proper over X xz A3.

Definition 3.2.3. Let A € X, (T") be a dominant cocharacter. We define the naive universal local model
M (S A, V) as Grg x N (Sx(N) xz A3).

We write M3, (< A, V) = MY (< A, V) xx X0 Itis a proper scheme over X° x A3,

Proposition 3.2.4. Let A € X,.(T") be a dominant cocharacter. The map 7 induces an isomorphism

(MRo(S X, V)N (Sxo(A) xz AY)) [ :

!
h)\':| ~ (P)\\Gsp4) Xz XO Xz A3 |::| .

ha!
Proof. Let N, be the unipotent radical of opposite parabolic to Py. Recall the decomposition Ny ~ [] U,v
where the product runs over ¥ € @V satisfying (¢(a"),A) < 0. For any commutative ring R and N €
N (R), we can write N as a product of N,v € U,v (R) over the same set of o

Note that { N \w}wew forms an affine open cover of Py\GL,. By pulling back along 7, we get an
affine open cover of S%,()). More precisely, we have 7y ' (Nyw) = Nyw where Ny is the affine scheme
over X whose R-points for for ¢ : Spec R — X are given by

Ny(R) = {(v = t)*N | N € Nx(R[v —t]), deg Nov < (¢(aV), =A) — 1} .

Let us write N,v = Z;ﬂé"v)’_’\)_l Xov j(v —t)? with X,v ; € R. From the proof of [Le+a, Proposition

3.3.4], we can deduce that taking the intersection Grz xN (ﬁ awxzA3) [h%,} imposes conditions that X v ;

for @ and j > 0 is determined by X,v o for o/ < @ < 0. Since the map

TN - Gl"g,x N (]\7,\11} Xz Ag) |:hl>\':| —)N)\’LU Xz XO Xz A?’ |:h1)\':|
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takes (v — t)* Nw to (N mod (v — t))w, this proves that 7y is an isomorphism. O

Remark 3.2.5. The above Proposition implies that M, (< A, V) N (S50 () Xz A?%) {h%,} is indeed proper

over XY xz A3 [ L } (by the properness of partial flag varieties). Thus the map

1 1
Ro(S A V)N (Sko(N) xz A%) |7 | = MEL(S A, V)
h)\! h>\
is a proper open immersion. Since proper morphism is universally closed, this map is an inclusion of a

connected component. Using this inductively, we obtain an isomorphism (cf. [Le+a, Corollary 3.3.5])

( (<A Y) {hi D . 5 11 (Py\GSp,) xz X° x ZA® {hi }

N<ANeXF(TY)

Definition 3.2.6. Let A € X, (T") be a dominant cocharacter. The universal local model M x (\, V) is the
closure of the connected component M5, (< A, V) N (8% () xz A%) of MY, (< A, V) inside MY (<
A, V). In particular, it is v-flat.

Proposition 3.2.7. Let A\ € X, (T") be a dominant cocharacter. Then M, (< A, V) [(2h ),] is smooth

over X0 x4z A3 [m}

Proof. Since the proof of [Le+a, Proposition 3.2.6] generalizes to our situation quite straight forwardly, we

only sketch the idea of the proof. We follow the notation in loc. cit. and write Y = MY (< A, V) {(2 hx)'}

S =X0xzA3 [(211 ),] and pr for the natural projection map Y — S.

There is a T -action on Y induced by the right multiplication by TV on G. Note that this preserves
the non-smooth locus in Y. Since pr is proper and the non-smooth locus in Y is closed, the image of the
non-smooth locus in S is closed as well. If the non-smooth locus is non-empty, it has a non-zero geometric
fiber which is a proper variety over a field with TV-action. Thus, such fiber contains a 7"-fixed point.
Since it is contained in a geometric fiber of Sxo()), it is known to be contained in the support of a section
sy + X% = Sxo(N) for some p € Conv(\) (see Lemma 3.3.7 in loc. cit.).

Thus, it suffices to prove the smoothness at a closed point x € Speck — Y lying in the support of
s,. Let s = pr(z). We claim that dim7,,Y/S < dim, Y;. If we have this bound, the completion @yﬂc is
generated over (5575 by dim,, Y many variables. Since S is regular, dim @y@ < dim (5575 + dim, Y, where
the equality holds if and only if (/9\)/’1; is a power series ring over 55’5 with dim, Ys; many variables. By

Remark 3.2.5 and the choice of x, we have
dim, Y; = dim P,\GSp,, dim, Y = dim P,\GSp, +4

Thus, the equality holds and pr is smooth at « by [Stacks, Tag 07VH].

Finally, we prove the claimed inequality. Following the argument in [Le+a, Proposition 3.3.6] and using
Lemma 3.1.4, we can show that T, Y} is a subspace of the space of matrices of the form (1 + ¢X)(v — ¢)*
where X € Lie GSp,(k((v — t))) whose entries are polynomials with degree bounds, and X satisfies certain
equation imposed by Grz xo. More precisely, the computation in loc. cit. shows that all diagonal entries of X
are zero, and for each root «, the a-th entry of X is zero if {u, av) > 0 and is determined by the coefficient
of the lowest degree term if (11, ") < 0. Thus the space of such X has dimension at most dim P, \GSp,.
This completes the proof. O


https://stacks.math.columbia.edu/tag/07VH
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We finish this section with two lemmas regarding the normalization of the universal local model. For an
integral scheme Y, we let Y™™ — Y denote the normalization of Y.

Let ! > 0 be an integer. It will be useful to consider the base change

MX(Aa V)l = MX()‘7 v) X X vl X

1/e

and its normalization (M x (A, V);)™™. When | = e and if we can take co = (—p)'/¢ as the uniformizer in

O, this has the advantage that the map Spec O — X x A3 sending v to —p is the composite of the maps
Spec O — X x A3 sending v — wand X x A% — X x A® sending v — v¢. In particular, we have

Mx (A, V) X x a3 ps—p SPECO = Mx (A, V)e X xxa3 5w Spec O.

Lemma 3.2.8. There is an open subscheme U C A3 only depending on X and l, such that M x (\,V); X g3
U— X xzUand (Mx (A, V))"™ xps U = X x7 U are flat.

Proof. This follows from [Le+a, Lemma 3.5.5, Remark 3.5.6]. O

Lemma 3.2.9. There is an open subscheme U C A3 only depending on \ and 1, such that if R is complete
DVR and f : Spec R — X x A® is a morphism sending v to a uniformizer of R and factors through X x U,

the base change
(Mx (A, V)R = (Mx (A, V))™ X xxas Spec R

is flat over Spec R, and (M x (A, V),)'R™ is normal.

Proof. This follows from [Le+a, Proposition 3.5.2]. To satisfy Setup 3.5.1 of loc. cit., take S = A?’[(Q};)!],

M = (Mx (N, V);)™ x,3 S, and use Proposition 3.2.7. O

3.3 Local models in mixed characteristic

We specialize to objects over O by taking base change Spec O — X sending v to —p. For a fpqc sheaf
Y — X, we write Yo = Y X x Spec O. For example, we have LGo = LG x x Spec O and LT G, LT Mp
similarly.

We have the global affine Grassmannian Grg. 0o = L*Go\LGe. Its generic fiber Grg g is equal to the
usual affine Grassmannian associated to GSp, over E. For A\ € X, (T") a dominant cocharacter, we write
S%(A) € Grasp,, for the open affine Schubert cell and S () for its reduced closure. The Zariski clousre
of Sg(\) in Grg e is the Pappas—Zhu local model M (< \) associated to the group GSp,, the conjugacy
class of A, and the Iwahori subgroup Z ([PZ13]). It is known that M (< A) is projective over Spec O (§7.1 in
loc. cit.).

Let a € O3. We define ng*‘ C LGo to be the subfunctor given by

dg 1
nga(R) = {g € LGo(R) | ’ud—Z§*1 +§Diag(std(a))§71 € WL+M4(R)}

for an O-algebra R. It is stable under left L*Go multiplication and induces a closed sub-ind-scheme
Grg’?g C Grg,o.
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Definition 3.3.1. We define the naive local model as M™ (< A\, V,) = M(< A) N Grg’*b. The (mixed
characteristic) local model M (X, V) is defined to be the Zariski closure of S%,(A) N Grg"b in M(< \). By
its construction, M (X, V,) is projective and flat over Spec O.

We define U(Z) := U(Z) xx SpecO and U(Z, A\, Va) := U(Z) N M (A, Va) where the intersection is
taken inside Grg . Note that the latter is equal to (U(2)™ =" x x Spec O) N M (), V) for large enough
h > 0. Thus, it is an open affine subscheme of M (), V,) by Proposition 3.1.5.

Our main interest in the geometry of M (A, V) is whether a completed local ring O, (A Vo) is a domain
for some © € M(A,Va) . To understand this property more geometrically, we introduce the following
definition.

Definition 3.3.2. Let Y be a scheme. A point y € Y is called unibranch if the normalization of the local ring

(Oyy)rea is local.

Remark 3.3.3. Suppose that Y is Noetherian and excellent. The followings are equivalent:
1. y € Y is unibranch;
2. the fiber above y of the normalization map Y™™ — Y is a single point ([Stacks, Tag 0C3B]);
3. the completed local ring OQy is a domain ([Stacks, Tag 0C2E]).

Let Z = wt, € W". There is a constant section Z : Spec Z — U(2)*™ =" x y X, for h large enough,
given by wv” € GSp,(Z((v))). We denote its composition with U (2)$™ =" x y Xy < Grg x x x Xo again
by Zz.

Let a € A3(O). We write the induced F point by a as well. We write Zg 5 for the F-point SpecF —
(Grg.x xx Xo) xz A3 given by (Z, a).

Recall that e denotes the ramification index of the extension O/Z,,.

Theorem 3.3.4. There exists a non-empty open subscheme U C A® depending only on \ and e, such that
ifa € U(O), then M (X, Va) is unibranch at any point Zg  contained in the special fiber. In addition,
O(U(Z, A, Va))"? is a domain.

To prove this Theorem, we introduce the local model in equal characteristic and prove its unibranch
property.

Definition 3.3.5. Leta € A3(F). We define M™ (< \,V,) := MW (< A\, V) x 43 a. We define the equal
characteristic local model M(\, V,) by the Zariski closure of

(ME(S A, V)N (S50 (N) xz A%)) xp0 2

in MM (< A, Va).

Remark 3.3.6. Although mixed or equal characteristic local models are generally not equal to base changes
of universal local models, their generic fibers can be obtained by taking base changes of the generic fibers of
universal local models. Suppose that 2, < p. By taking fiber product at E-point (—p,a) € X x A3 (resp. at
F-point a), we also have

Mxo(A, V) X xxas Spec E = M(\,Va) Xo Spec E
Mxo(/\,V) X A3 SpecF = M(/\,Va) X x XO.


https://stacks.math.columbia.edu/tag/0C3B
https://stacks.math.columbia.edu/tag/0C2E
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Moreover, M (X, Va) (resp. M(A, V,)) is characterized as p-flat (resp. v-flat) closure of M yo (A, V) X x x a3
Spec E inside M x (A, V) X x » a3 Spec O (resp. M xo (A, V) X x a3 Spec E inside M x (A, V) X 53 Spec F).

Forl € Z- and an X-scheme Y, we write Y; for the base change Y X x .t X.

Proposition 3.3.7 (cf. Proposition 3.4.4 in [Le+al). Let I > 0 be an integer. Then M(\, V), is unibranch

nm

at any Zg o contained in its special fiber. Moreover, the preimage of U(Z) in (M(\, Va))™™ xx Xo is

connected.

Proof. This mainly follows from [Le+a, Lemma 3.4.7, 3.4.8]. Indeed, we can take a one-parameter subgroup
in Lemma 3.4.7 in loc. cit. valued in TV x G, (instead of T x G,,) whose induced action on I (E}Sim*gh
(instead of Uy (Z)9t<") satisfies the conditions stated in Lemma 3.4.7 in loc. cit.. Using this, the proof of

[Le+a, Proposition 3.4.4] can be applied in our case too. O

Proof of Theorem 3.3.4. The novel idea in [Le+a] is comparing the mixed characteristic and equal character-
istic local models inside the universal local model. Let U be an open subscheme U C A? satisfying Lemma
3.2.8 and 3.2.9 for [ = e and (2hy)!e! is invertible. Note that this implies U(O) = 0 unless p > (2h))!el.
Thus we can assume that O/Z,, is tame and take @ = (—p)'/¢ (after enlarging the residue field if necessary).

Let a € U(O). The following diagram explains how to make such comparison.

M\, V)™

(Mx (X, V)e)™ X xxp Spec O —— M (A, Va) ——— SpecO

| | [

(Mx\,V)e)™ ————— Mx(\,V)e —— X xU

1 1 Jons

(MX(AaV)e)nm XXXUA%? — M()\,Va)e —_— A]l:?‘

(M V

a)e)nm

By Lemma 3.2.8, M x (\, V), is flat over X x U. Thus, all rectangles are cartesian by Remark 3.3.6. More-
over, two base changes of normalization map (Mx (A, V) )™ — Mx (A, V), are finite and birational.
Finiteness is obvious, and birationality is preserved by base change because the dense open subscheme
Mxo(A, V). C Mx (A, V), which is already normal by Proposition 3.2.7, is still dense after each base
change. This induces two surjective dashed arrows by [Stacks, Tag 035Q], and the top dashed arrow is an
isomorphism by Lemma 3.2.9.

Note that M (A, V,) and M(X, V,) share the same special fiber. Suppose that M (A, V,) is not unibranch
at Zr ». Then there are at least two points in the preimage of Zg 5 in M (A, V,)™™. Therefore, the preimage
of Zp o in (M(A, V))™™ contains at least two points. In turn, this implies that the preimage of Zg a in
(Mx (N, V)e)™ X xxu Af contains at least two points. By the surjectivity of the bottom dashed map, this
contradicts Proposition 3.3.7. This proves that M (), V,) is unibranch at Zg 4.

Note that O(U(Z, A, Va))[1/w] is regular domain by Proposition 3.2.7. Also, the preimage of U(Z, A, Va)
in the special fiber of M (A, V,)™™ is connected by Proposition 3.3.7 and the above diagram. Then O(U (z, A, V,))"»
is a domain by [Le+a, Lemma 3.7.2]. O


https://stacks.math.columbia.edu/tag/035Q
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3.4 Products of local models

We now generalize Theorem 3.3.4 to products of local models. Let 7 be a finite set. Let A = (\;j);es €
X.(TV)7 be a dominant cocharacter and Z = (Z;) ;e € WV-7 . We define

M)gj()\,V) = H Mx()\j,V) - (Grg7x Xz AS)J.
JjET
Leta = (a;)jes € (A%)7(0). We also define M7 (X, Va) := [[;c.; M(Aj, Va;) and Uz (2, A, Va)) 1=
[I;e7 U(%5,Aj: Va,). The following is the main result of this chapter.

Theorem 3.4.1. There exists a non-empty open subscheme U C (A3)7 depending only on \ and e, such
that if a € U(O), then M 7 (A, Va) is unibranch at any point Zg o contained in its special fiber. In addition,
O(Uz(z,A\, V)" is a domain.

Proof. Let M; := Mx(\;,V) — X x A% and Z; € WY. The special fiber M; x x X, intersect with
a section z; only if z; = wt, for some w € W and v € Conv();). Note that there are finitely many Z;
satisfying these conditions.

Let 7 be the generic point of A®. We define Fix; to be the set of z; € WV which intersects with
M; X x a3 (Xo % n). For any z; such that z; = wt,, for some w € W and v € Conv();), consider a map

fgj : (MJ X x Xo)ﬂg—) A3,

(Here, the intersection is taken inside Grg x X x Xo X A3.) The image of [z, is constructible, and it contains
nif and only if Z; € Fiz;. Note that any constructible set containing the generic point of irreducible scheme
contains an open neighborhood of the generic point. Thus, there exists an open neighborhood Vj’ of n which
is contained in the image of fz, for all Z; € Fiiz; and the complement of the image of fz; for all Z; ¢ Fix;.

Let V; be the intersection of Vj’ with the open subscheme of A? satisfying the conclusion of Lemma 3.2.8
for \; and e. Then M|y, — X x Vj and Z; € Fix; satisfy the assumptions of [Le+a, Corollary 3.6.2]. As a
result, there exists an integer ¢’ and an open subscheme U; C V; satistying the following: for any z; € Fiz;
and a; € U;(0O), there exists a finite DVR extension O’ of O of degree < €’ and an O’-point of M; lifting
(zj,a;) € M(Xj, Va, ) (F).

Let U; C U be the open subscheme in which Theorem 3.3.4 holds for \; and ee’l. Then we define U =
;7 Uj. Let O’/ O be the extension obtained by adjoining ¢’!-th root of uniformizer and e’!-th root of unity.
Note that O' contains any extension of O of degree < ¢’. For z € [[,. ; Fliz; and a € U(O), Mz(A, Va)
is unibranch at Zg , if and only if the completed local ring of M7 (A, Va) at Zg » is a domain, which is
a subring of the completed local ring of M7 (A, Va) X Spec O’ at Zp 5. Similarly, O(Uy(Z, A, Va))"'»
is a subring of O(U7(z, A, Va X© Spec O'))"». Thus, it suffices to prove the claim after replacing O by
O'. Note that both the completed local ring of M 7(X,Va) X Spec O’ at Zr o and O(U7(Z, A, Va X0
Spec )" are completed tensor products of the completed local ring of M (A;, Va,) X0 Spec O’ at Z; g a,
and O(Uz (%), Aj, Va; X0 Spec O'))"», which are known to be domain by Theorem 3.3.4. By the choice of
O’, each M; x o Spec O has O’-point lifting (Z;,a;) in its special fiber. Then the two claims follow from
[KW09b, Proposition 2.2], and [Bar+14, Lemma A.1.1] respectively (as explained in the last two paragraphs
of the proof of [Le+a, Theorem 3.7.1]). O
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3.5 Special fiber of naive local models in mixed characteristic

In the remainder of this chapter, we study the special fiber of the naive local models in mixed characteristic.
Recall that the naive local models in mixed characteristic are defined by imposing the monodromy condition
on the Pappas—Zhu local models inside Grg,0 = LTGo\LGe. The special fiber Grg o xo SpecF is the
affine flag variety F1 := Zp\ L(GSp,)r. Given a € O3, we define FI1V* :=Fl Xy, Grg %

It is known by [PZ13, Theorem 9.3] that the special fiber M (< \)g is the reduced union of the affine
Schubert cells Sg(Z) for Z € Adm" ()). Thus, the underlying reduced closed subscheme of M™ (< \, Va)g
is equal to the reduced union of Sg(2) N FIV* for Z € Adm" (\).

For a € @, we define H""") = {x € X*(T) xzR |0 < (z,a") < 1}. The following is the main result

of this section.

Theorem 3.5.1. Let h > 0 be an integer, w € W, anda € O3 Suppose that w is h-small and a mod w € F3
is h-generic (Definition 2.1.8). Then Sg (&7*)(1F1va is an affine space of dimension 4—# {a € dT |w(Ag) C g }

As a Corollary, we get a classification of top(= 4)-dimensional irreducible components of M™ (<
A, Va)r. If d € Z>( and X is a reduced scheme, we let Irrq X denote the set of d-dimensional irreducible

closed subschemes of X.

Definition 3.5.2. We say that @ € W is regular if @*(Ag) ¢ H" for any o € ®+. Let A € X, (TV).
We define Adm,,, (\) € Adm" () to be the subset of Z € Adm" (\) such that Z* is regular. We similarly

reg

define Adm, e (v) for v € X*(T'). Then (—)* induces a bijection between Adm,eg (1) and Adm,,, (¢(v')).

reg

Corollary 3.5.3. Let A € X*(TV) be a dominant cocharacter. Suppose that a mod w € F" is hy-generic.

There is a bijection

Adm),, (\) = Trry M™ (< X\, Va)r

reg

Z > (Sg(2) NF1Ve).

Proof. This follows from [PZ13, Theorem 9.3] and Theorem 3.5.1. To apply Theorem 3.5.1, note that z €
Adm,,, (\) is hy-small. O

reg

To prove the Theorem 3.5.1, we describe Sq(Z) using explicit coordinates. A version of Bruhat decom-

position says that we have a double coset decomposition
(LGSpy)F = U v Ir2Ip

and the open Schubert cell Sp(Z) can be identified with Zg \Zp 27y
Let L=~ Gy C LG be the subfunctor given by

L= Ge(R) = {g € GSp, (R M) | g mod % c B(R)}

for any F-algebra R. We define Nz := z ' L™"Gpz N .

Recall that the duality isomorphism ¢ identifies a coroot oV of G and a root ¢(a") of GV, and we write
U,v for the root subgroup of G associated to ¢(a"). Given (a¥,m) € ®V x Z, we let Upv 1y, C LUgv
denote the subfunctor such that for any F-algebra R, Uyv y(R) C Uyv (R((v))) is identified with v™ R C
R((v)) under the isomorphism U,v ~ G,.
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In what follows, we fix z € Ay. Note that [(z, a")]| = davso and [(x, @) ] = —d4v <o.
Proposition 3.5.4. Lerz € wV.

1. We have the following decomposition

NZ ~ H Ufoz\/,m

(aV,m)e®Y
where the product runs over the set &Y = {(a¥,m) € ®¥ x Z | (z,a¥) <m < (Z*(x),a)}.

2. There is an isomorphism
IF XF {2} XE Ng ~ IFEIF

given by multiplication. This induces an isomorphism ZNz ~ Sp(Z).

Proof. 1. We claim that U_,v ,,, C N3 if and only if (a¥, m) € ®Y. It is easy to check that U_qv ,,, C
T if and only if §ovsg < m. Let 2* = st, € W. Direct computation shows that EU,avymgfl =
U_s=1(av),m—(v,avy- Thus U_qn C Z7'L7~GpZ if and only if m — (v,a") < (z,s7(a")), or

equivalently m < (s(x) + v, V). This proves the claim.

Observe that U_,v ,, C Ny only if (*(x),a¥) > 0. Let w € W be the unique element such
that wz* € W, If (3*(z),a") = (wZ*(z),w(a’)) > 0, then w(a") > 0. In other words,
¢(w)Nz¢(w)~1 € LU. Then the claimed decomposition follows from the decomposition of U.

2. The injectivity of the multiplication map is obvious. The surjectivity follows from Zg = ((2 " 1Zgz) N
Zr)Ns.
O

Letd,v z = | (Z*(z),a") ] — [{z,aY)].

Corollary 3.5.5. Let R be a Noetherian F-algebra. If M € N3z(R), we can write M = ] v cov v0a¥ >0 Mo
where Moy € U_qv (R[v]) =~ R[v] is a polynomial of degree at most d,v .

Proof of Theorem 3.5.1. Let Z = w* and w € W be the unique element such that ww € W+. We follow
the proof of [Le+a, Theorem 4.2.4] using the Corollary 3.5.5 instead of Corollary 4.2.12 of loc. cit.. Indeed,
loc. cit. shows that the monodromy condition on ZM for some M € Nz(R) implies that coefficients in the
polynomial M, are determined by its top degree coefficient and coefficients of M, such that w(a'V) <
w(a"). Inductively, this shows that Sg(2) NF1V»
coefficients of M, . Thus, the dimension of Sg(Z) N F1V= is equal to

is an affine space with coordinates given by the top degree

#{a" € ®V | U_4v m C N5 for some m > 0} .

This is equal to the number of oV € ®V such that (z*(z),«") > 0 and 2*(z) and = does not lie in the same
a-strip. The first condition says that w(a") € ®YF, which has size 4. For such «, the second condition
holds unless ¥ € &V and z*(Ag) C HY . This completes the proof. O
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We now make comparison between irreducible components in M (< X, V,)r for different choices of
A and a. We define LGSp) © C LGSp, as the subsheaf given by

dA 1
R {A € LGSpy(R) | UEA* € vL*MF(R)}

for F-algebra R. Let F1V° denote the fpgc-quotient sheaf IF\LGSpZO.
Remark 3.5.6. Leta € O3 and 7 = s~'t, € W" such that a = s~(u) mod w. Choose a dominant

cocharacter A € X, (Tv) and w € W A direct computation shows that (cf. [Le+a, Proposition 4.3.1])

M™(< N\ Va)pZ = M(< A)pZNFIVO
(Sg(w*) NFIV=)Z = (Sa(w*)Z) NF1Ve.
This allows us to compare M™ (< A, V) for different A and a and its irreducible components inside F1Ve.
Definition 3.5.7. Let 3 € W and @y, @y € W+. We define
S%(@l,’wg,g) = S%((I’Egl’IUle)*)g* C Fl

S%(@l,@g,é)vﬂ = S;«({Lvil,{LVIQ,‘SV) N Flvo C Flvo

v ~ ~ ANA  ~ ~ A v
SFO(wh w?v,g) = Si:)‘(wlv w2, E/)VO
where the closure is taken in F1V°.

Lemma 3.5.8. Let s = t,s, Wi, and wo be as above. If further Wy woy is m-small and 3 is m-generic for

some integer m, then SIY °(wy,Ws, S) is irreducible closed subvariety of F1V° of dimension 4.

Proof. By [Le+a, Proposition 2.1.5], @glwoﬁl is regular, and SFV‘O (w1, Ws, §) is isomorphic to Sg(w*) N
F1V= by Remark 3.5.6, where @ = @, 'wo@; and a € Z? such that a = ¢(s~'()) mod p. Then the claim
follows from Theorem 3.5.1. O]

In fact, many of SPY °(wy,ws, §) for different s, wy, and ws are equal.
Proposition 3.5.9. Let 5 € W and @, @, € W+.

1. Suppose that, for i = 1,2, w; is m;-small for some integer m; and s is (mq + mo)-generic. Then we

have
Sy (W1, Wa,3) = Sg° (W1, e, 5y *).
2. Suppose that w; is in Wf and s is 3-generic. For all w € W, we have

SyO (W1, e,3) = Sp° (W1, e, 5w).

Proof. The first item is [Le+a, Proposition 4.3.5], and the second item is Proposition 4.3.6 in loc. cit.. Note

that their proofs generalize to our setup straightforwardly. O

Definition 3.5.10. Let (w,w) € Wﬁ x X*(T) with ¢, being 3-generic. We define C', ) := Sy (wy,e,3
for any 5 € W such that 5(0) = w.
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This is well-defined by Proposition 3.5.9. Since w; is 3-small, C, . is irreducible of dimension 4 by
Lemma 3.5.8.

Let A € X.(T") be a regular dominant cocharacter. Recall that the set of admissible pair
AP(§7I (V) = {(@1, ) € (Wi x WH)/XO(T) | 1 1 tgos (3 By T }
By [Le+a, Corollarly 2.1.7], there is a bijection
AP(¢71 (V) = Admy, (A)

reg

o L (3.5.11)
(w1, Wa) — (Wy wowy)™.

Theorem 3.5.12. Let A € X..(T") be a regular dominant cocharacter and a € O3. Let Z = s™'t, € wv
be (hy + 3)-generic such that a = ¢(s~ (1)) mod w. We have a bijection

AP(¢71(N) = Tty (M™ (< A\, Va)r?2)

(@1,’[52) — C(ﬁl,Z*{E;l(O))'
Proof. By Corollary 3.5.3, Remark 3.5.6, and (3.5.11), there is a bijection

AP(¢ 1 (N)) = Tiry(M™ (< A, Va)p2)

(W1, W) > Sp° (W1, Wa, Z*).
Then the claim follows from the equlities
Vo o~ oo Vo~ -
S (w1, ws,2") = Sp° (w1, e, 2w, D= C(wl,Z*wgl(o))

by Proposition 3.5.9, the genericity assumption on z, and noting that w; is 3-small and w5 is hy-small. [

3.6 Matching irreducible components and Serre weights

Let Zy r C Zp be the subfunctor given by
R — {A € GSp,(R[v]) | Amod v € U(R)}

for F-algebra R. We define Fl as the fpqc-quotient sheaf Z; g\ LGSp,. Then the natural quotient map
U : Fl — Flis a Ty -torsor.
If X C Flis a closed subvariety, we let X denote the pullback X X Fl. Then X — X is again a

Ty -torsor. Let A € X, (T") be a dominant cocharacter and a € O3. Then we have the following T} -torsors

M(< Mg — M(< N
M™(< A\, Va)r = M™(< A, Va)r
M\, Va)r = M(\, Vo).

For (w,w) € Wfr x X*(T) such that t,, is 3-generic, we also have a Ty -torsor 5'(@#,) = Cl@,w)-
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Let J = Hom(k,F). For j € J, if X; C FI (resp. )N(j C FNI) is a closed subvariety, we let X 7 :=
~ ~ ~ 7

11 jeg Xj (resp. X7 = Hje 7 X;) to be the closed subvariety in F1Y (resp. F1 ). In particular, given a
dominent cocharacter A = (\;)jes € X.(T") anda = (a;);es € (0)7, we have

M5 (<A Va)p = [[ M(< A, Va,)F

jeTJ
MY (<A Va)r = [[ M(< A, Va,)r-
JjET

~ ~ =V ~
LetzZ = (zj)jeg € W suchthat z; = s;

diagram

t,, and a; = sj_l (1) mod w. We have the following cartesian

A7V Tz & Vo
M (< A, Va)p — FL,

l |

M (< A\, Va)p —— FL}°

where 73 is right translation by 2. Let (w1, w2) € AP(¢~'(N) = [[;c, AP((;S*I/(:\]')). If Zis (hy + 3)-
generic, by Theorem 3.5.12, we have a 7 f-dimensional irreducible component of M (< X\, V,)gZ given
by

Canzarron = 1 Can, zas 00
jeJ
Definition 3.6.1. Let o be a 3-deep Serre weight and ( be an algebraic central character (Definition 2.5.4) lift-
~ =+ . .
ing central character of 0. Let (wy,w) € W, x X*(T) be the lowest alcove presentation of o corresponding
to ¢. We define CS := C(g, ) and CS = é(@hw).

Theorem 3.6.2. Let A\ € X.(T") be a regular dominant cocharacter. Let R be a Deligne—Lusztig repre-
sentation with max{6, hy + 3}-generic lowest alcove presentation (s, ) that is (A — n)-compatible with
¢ € X*(Z). Leta € (0®)7 suchthata = ¢(s~' (i +n)) mod w. Then we have

Iy (MF (X, Va)£)o(s ™ n) = {CS |0 € THER S W (6™ (V) =)}

Proof. This follows from Proposition 2.5.6 and Theorem 3.5.12. O

3.7 Torus fixed points

The torus 7V+7 acts on F17 by right translation and stablizes Flg”. The natural inclusion W7 ¢ F17
(sending wt, € WVYJ to wo” € FIY (F)) identifies WY-7 and the set of TV -fixed points in F17. Note
that WY+ is contained in Fl;o. In this section, we prove the following result on the 77 -fixed points of

irreducible components in Flgo.

Theorem 3.7.1. Let o be a 3-deep Serre weight with a lowest alcove presentation (W1, w). Let C’ai) be
the set of TV~ -fixed points in C (g, ).

V7

1. We have {(t,win)* | we W} € CL7 ) € {(to®)* | @ € W, < woiby }.



CHAPTER 3. THE THEORY OF LOCAL MODELS 42

2. Foreach j € J, there is a polynomial Pg, ; € Z[X1, X2, X3] depending only on w, ; € Wfr such
that if Pg, ,(w;) # 0 mod p, then CT. "7 - = {(t,@)* | @ € WY, < woir }

(@1w) =

Proof. 1t suffices to prove the claim for 7 = {*}. By definition, Cg, ) = SPYO (w1, e, t,,). By Proposition
3.5.9, for any w € W, the latter is equal to SFY“ (w1, e, t,wwg) which contains (¢,ww;)*. This proves the
first inclusion in item (1).

Since C(@l «w) 18 contained in S (Wiwot,), the second inclusion in the item (2) follows from the standard
result on torus fixed points in Schubert varieties.

Finally, we prove item (2) by following the proof of [Le+a, Proposition 4.7.3]. Since the proof of
loc. cit. generalizes to our setup, we only sketch the argument. Let w € W and @ < wow;. By Lemma
4.7.1 in loc. cit., (t,w)* € C(j;jvl’w) if and only if Sg(@%wp) N F1Y#) has nonempty intersection with the
open neighborhood L~~Gw*. Note that here we interpret ¢(w) as an element in Z3.

We claim that the intersection is nonempty if ¢(w) mod p € F3 is contained in some nonempty open
subscheme U C A3. Then we take Pg, (X1, X2, X3) to be a polynomial such that Py, o ¢! vanishes on the
complement of U (here, we view ¢ as a map A3 — A3). The idea is that one can consider affine flag variety
Flz and its open Schubert variety Sy (w;wg) defined over Z. Then we impose the monodromy condition
with parameters (b,a) € A xz A? given by

1
bv%g_l + gDiag(std(a))g™"' € ;LJFM

which induces a closed subscheme V° in Sg(wiwg) x Al xz A3. Tts fiber at (1, d(w)) € Al xz A3(F)
is equal to Sg(@Wiwo) N F1V#« . Meanwhile the reduced fiber at (0,a) € A’ xz A3(C) is an open dense
subscheme of an irreducible component F1,, g, of a certain affine Springer fiber considered in Appendix A.
By Theorem A.3, this reduced fiber has nonempty intersection with L=~ Giw*. Thus Y°NL~~Gzw* C Y°is
anonempty open subscheme. An easy generalization of Theorem 3.5.1 shows that there is an open subscheme
V C Al xz A3 such that Y°|yy — V is a trivial vector bundle over V. Thus the subspace of parameters
(b,a) € V at which the fiber of J’° has nonempty intersection with L=~ Gzw™ is open. By observing that such
subspace is stable under scalar multiplication (acting on A xz A3 diagonally), the subspace of parameters
(1,a) at which the fiber of Y° (which is Sg&(@jwo) N F1V*) has nonempty intersection with L=~ Gz@* in

A3 is also open in A3. This proves our claim. O

Let p be a tame inertial L-parameter over F with 6-generic lowest alcove presentation (s, 1) compatible
with ¢ € X*(Z). The following Theorem gives a geometric interpretation of the set 1’ () under polynomial

genericity assumptions.

Theorem 3.7.2. Let p be as above. Let ch (p) be a set of 3-deep Serre weights o with lowest alcove
presentation compatible with ¢ such that w*(p) € CS.

1. We have Wopy (p) C VVgC (p) C W' (p).

2. Let (Wy,w) be a lowest alcove presentation of o € W' (p) compatible with (. For each j € J, let
Pg, , be the polynomial in Theorem 3.7.1. If Pg, ,(w;) # 0 mod p for all j € J, then o € Wgc (P

Proof. Leto € W' (7). By Proposition 2.5.8, o is 3-deep with a lowest alcove presentation (@, @(5) @, *(0))
-~ o~ =+ =+ e~ ~ e e\~ ~ o\~
for some (1, Wa) € (W, xW ')/ XO(T) satisfying iy 1 w;. We write @ (p)wWa = t,,w so that w(p)w, * (0) =

w. Also 0 € Wi,y (p) implies w; = ws. Then both item (1) and (2) follow from the corresponding items in
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Theorem 3.7.1 and noting that

{(to®)* | @ € W @ < wothy } = {(towd)* | we W, @ e W, w1}

We end this section by recording the following Proposition, which will be used in §6.2.
Proposition 3.7.3. C(g, . is unibranch at its TV -fixed points.

Proof. This can be proven as the corresponding result for GL, [Le+a, Proposition 4.7.5] similarly to Propo-
sition 3.3.7. O



Chapter 4

Moduli stacks in p-adic Hodge theory

In this chapter, we construct a symplectic variant of the moduli stacks of étale (¢, I')-modules constructed
in [EG23] and prove its properties including the existence of closed substacks parameterizing potentially
crystalline representations. We also construct symplectic variants for the p-adic formal algebraic stacks con-
sidered in [Le+a, §5], namely, the moduli stacks of Breuil-Kisin modules, and étale ¢-modules. Then we

study the geometric properties of potentially crystalline substacks using local models in §3.

4.1 Sympletic étale (o, [')-modules

Only in this section, we allow K/ Q,, to be ramified.

For a p-adically complete O-algebra R, we write X,,(R) for the groupoid of projective étale (p,T)-
modules of rank n with R-coefficients, in the sense of [EG23, Definition 2.7.2]. Then X, is a Noetherian
formal algebraic stack over Spf O (Corollary 5.5.17 in loc. cit.). When R is a finite O-algebra, there is an
equivalence of categories between the category of projective étale (¢, I')-modules with R-coefficient and the
category of continuous representations of Gx on finite projective R-modules. The goal of this section is to
construct a moduli stack of symplectic (p,I")-modules over O using moduli stacks of Emerton-Gee.

We start by defining a symplectic variant of étale (¢, I")-modules.

Definition 4.1.1. Let R be a p-adically complete O-algebra. A symplectic projective étale (¢, I')-module (of
rank 4) with R-coefficients is a triple (M, N, o) where M € X;(R), N € X;(R),and v : M ~ MY @ N is
an isomorphism between rank 4 étale (i, I')-modules satisfying the alternating condition (a¥ @ N) loa =

—1r. We write Xgym (R) for the groupoid of projective symplectic étale (¢, I')-modules with R-coefficients.

Lemma 4.1.2. Let R be a commutative ring with identity and G be an abstract group. There is an equivalence

of groupoids

{p: G — GSp,(R)} ~ {(pf .a) | PG — GLy(R),x : G = GL1(R), }

arp =) ex (@ ex) toa=-1

p = (std(p),sim(p), a,)

where morphisms in the latter groupoid is given by isomorphisms of p' and x commuting with o, and the

isomorphism «, is given by the matrix J with respect to the standard basis of std(p) and its the dual basis.

44
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Proof. Note that « defines a non-degenerate alternating R-bilinear pairing (—, —), : p’ X p' — R given
by (z,y)a = a(y)(x). Then the essential surjectivity follows from the presentation of standard symplectic
space. More precisely, one can find two vectors vy, v4 € p’ such that (vy,v4), = 1, and two vectors vy, v3
such that (vg,v3), = 1 in the complement of the span of vy, v4. Then the basis {v1,v2,v3,v4} gives the
standard symplectic space. The proof of fully faithfulness is elementary. O

Corollary 4.1.3. Let R be a finite local O-algebra. There is an equivalence of groupoids
{p G — GSp4(R)} ~ Xsym(A).

Proof. This follows from Lemma 4.1.2 and Fontaine’s equivalence between Galois representations and étale
(¢, T')-modules. O

We recall some definitions from [Eme]. A formal algebraic stack is quasi-compact if it admits a mor-
phism from a quasi-compact formal algebraic space which is representable by algebraic spaces, smooth, and
surjective. A morphism X — ) of formal algebraic stacks is quasi-compact if for every morphism Z — )
whose source is an affine scheme, the fiber product X' Xy, Z is a quasi-compact formal algebraic stack. A
formal algebraic stack X is quasi-separated if its diagonal morphism (which is representable by algebraic
spaces) is quasi-compact and quasi-separated. We have the following obvious generalization.

Definition 4.1.4. A morphism f : X — ) of formal algebraic stacks is quasi-separated if the relative
diagonal Ay : X — & xy X is quasi-compact and quasi-separated.

It is easy to see that if f : X — ) is a quasi-separated morphism of formal algebraic stacks whose target
is quasi-separated, then X is quasi-separated.

A formal algebraic stack X is locally Noetherian if it admits a morphism from a disjoint union of affine
formal algebraic spaces which is representable by algebraic spaces, smooth, and surjective. Moreover, X is
Noetherian if it is locally Noetherian, quasi-compact, and quasi-separated.

We denote by std : Xgym — Xy and sim : Xgym, — A3 morphisms sending (M, N, ) to M and N

respectively.

Theorem 4.1.5. The morphism std x sim : Xsym — X4 Xspro X1 is representable by algebraic spaces,
quasi-compact, and quasi-separated. In particular, the stack Xsyy, is a Noetherian formal algebraic stack

over Spf O.

Proof. We first prove that std x sim is representable by algebraic spaces and quasi-compact. Let S — Spf O
be a test scheme and S — X, Xgpr o A1 be a morphism corresponding to étale (¢, I')-modules Mg and Ng
(of rank 4 and 1, respectively). If S’ is a S-scheme, we write (Mg, Ng-) for the pullback of (Mg, Ng) to
S’. The fiber product

QS = XSym XX4><X1 S
is given by the following subsheaf of Isom(Mg, Mg ® Ng)

ag: 8w {a' € Isom(Mg, Mg ® Ng/) | (/)Y ® Ng1)oa' = —1pr5} -
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We have the following cartesian diagram

Qg S

l o

Isom(Mg, M ® Ng) — Isom(Mg, MY ® Ng) xg Isom(M{ ® Ng, Mg) —— Aut(Mg)

where the right vertical map is a constant section given by —1,,, € Aut(Mg), the left bottom horizontal
map sends « to (a, (a¥ ® Ng)~1), and c is the composition. Since X is quasi-separated, Aut(Mg) — S
is quasi-compact and quasi-separated. This implies that the section —1,/, is quasi-compact, and so is ag —
Isom(Mg, M{ @ Ng). In particular, ag — S is quasi-compact. This proves that std x sim is representable
by algebraic spaces and quasi-compact.

‘We now prove that std x sim is quasi-separated. By the following cartesian diagram

Isom((Mi, N1, o), (Ma, Na,ag)) —— Isom (M, Ms) x Isom(Ny, No) ——— S

! l Lo

Xsym Xsym X xyxx, Xsym ————— Xsym X Xsym

it is suffice to show that
Isom((My, N1, 1), (M2, Na, ag)) — Isom(My, M) x g Isom(Ny, N2)

is quasi-compact and quasi-separated. It is clearly a monomorphism, and thus is quasi-separated. Note that
there is a morphism

d: Isom(My, Ms) xg Isom(Ny, No) — Isom(My, Ms) X g Isom(Ny, No)
(f,9) = (' o ((f) " ®g) o au,g)

which makes the following diagram cartesian

M((Mlleaal)a (M2,N2,0l2)) I ISM(Mth) Xg M(Nth)

J |

Isom(My, Ms) x g Isom(Ny, Ny) —2— (Isom(My, M) x g Isom(Ny, N3))?2

Then the top horizontal arrow is quasi-compact because Isom (M7, Ma)x sIsom (N7, No) is quasi-separated.

Finally, X5y, is a formal algebraic stack over Spf O by [Eme, Lemma 5.19]. It is quasi-compact and
quasi-separated because std x sim and Xy Xgpr 0 X are. It is also locally Noetherian because Xy X gpr 0 X1
is, and std x sim is quasi-compact. O

Let 7 : Ix — TV(E) be an inertial K-type and A € X,(T") be a dominant cocharacter. Recall the
potentially crystalline (resp. semistable) substack X, A[\/’T/ (resp. X, js”\/’T/) of X, with Hodge type \' := std()\)
and descent type 7’ := std(7) ([EG23, Theorem 4.8.12]). It is a O-flat p-adic formal algebraic substack. For
finite flat O-algebra A, X4A"T' (A) (resp. XES’A/’T/ (A)) is the full subgroupoid of X4(A) consisting of lattices
in potentially crystalline (resp. semistable) G i -representations of Hodge type A and inertia type 7'. For

,‘ . ro_t VA ”
convenience, we write X;"" and X7 instead of X, 7 and X7 . We define Xs’\y; (resp. Xg;ﬁ‘l’T) to
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be the O-flat part (see [Eme, Example 9.11]) of Xsym X x, Xi‘/’T/ (resp. Xsym X x, XZ’S’)‘/’T/).
Proposition 4.1.6. Let )\, T be as above.

1. The stack Xs)\y; (resp. Xss;rf‘]T ) is a p-adic formal algebraic stack and uniquely determined as O-flat
closed substack of Xsym such that for finite flat O-algebra A, XS)‘mi(A) C Xsym(A) (resp. Xg;r;\lT (A) C
Xsym (A)) is precisely the subgroupoid consisting of lattices in potentially crystalline (resp. semistable)

G i -representations of Hodge type A and inertia type T.

2. The algebraic stacks XSAYITH Xspfo SpecF (resp. XSS;’I?]’T xspf 0 SpecF) are equidimensional of di-

mension dy =}  dim Py \GSp,.
Proof. The first claim follows from the construction. For the second claim, the proof is identical to that of
[EG23, Theorem 4.8.14], using GSp, instead of GL4 and the dimension formula for the potentially crystalline
(or semistable) symplectic deformation ring ([BG19, Theorem A]). O]

4.1.7 TIrreducible components in Xsyp, red

Let X4 ;eq be the underlying reduced substack of Xj. It is an algebraic stack of finite presentation over F
and equidimensional of dimension 6[K : Qp] ([EG23, Theorem 5.5.11 and 6.5.1]). Moreover, its irreducible
components are labelled by Serre weights (of GL4(k)). Our goal is to prove analogous results for the under-
lying reduced substack Xsym red Of Xsym.

Let o be a Serre weight (of GSp,(k)). Then there exists A\ € X7 (T) such that o ~ F()). For each
J € J, we identify \; with a triple of integers (\;1,Aj2;Aj3) such that 0 < A\j1 — Aj2,Aj2 < p—1las
explained in §2.1.

Definition 4.1.8. We say that p : Gx — GSp,(F) is maximally non-split of niveau 1 and of weight o if

p= 4.1.9)

where

* 7 is maximally non-split of niveau 1, i.e. it has a unique G g -stable complete flag;
4 —d(Xi+m;),
° @i:1 XilIx = Hjej WK,an "

o If X1X2_1|IK = 71 (resp. ngg_lhk =z '), then \jo = p— 1 (tesp. \j1 — A\j2 = p— 1)
for all j € J if and only x1x5 ' = &' (resp. xax3 ' = £ ') and the element of Ext,,_ (X1, x2)
(resp. ExtéK (x2, x3)) determined by p is trés ramifiée. Otherwise, Aj1—Aj2=0(@esp. \jo—Aj3 =
0) for all 5 € J. (Note that X1X2—1 = ngzl.)

The following is the main Theorem of this section.

Theorem 4.1.10. The stack Xsym req is an algebraic stack over Spec F of finite presentation and equidimen-
sional of dimension 4[K : Q). For each (isomorphism class of) Serre weight o, there exists an irreducible
component Co C Xgym red containing a dense locus of p maximally non-split of niveau 1 and of weight o.
This induces a bijection between the set of isomorphism classes of Serre weights and the set of irreducible

components of Xsym red-
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Before we proceed, we define potentially diagonalizable representations. Let std’ : GSp, — GLj5 denote

the composite of the projection GSp, — SOs5 and the standard representation SO5 — GLs.

Definition 4.1.11. A continuous representation p : G — GSp,(QO) is potentially diagonalizable if p o E
is potentially crystalline and std(p) is potentially diagonalizable in the sense of [Bar+14, §1.4].

Example 4.1.12. Suppose that p : G — GSp,(O) is potentially crystalline and ordinary (in the sense of
[Bar+14, §1.4]). Then p is potentially diagonalizable by Lemma 1.4.3 of loc. cit..

The following two results will be proven in §4.1.15 and §4.1.19 respectively. We write Xy for

ym,lred,le7
XSym,red XE Spec Fp.

Proposition 4.1.13. For each Serre weight o, there exists an algebraic stack C F, C XSym,re 4F, irreducible
of dimension 4K : Q] containing a dense locus of p maximally non-split of niveau 1 and of weight o.

Furthermore, there exists a closed substack Cspan C Xg of dimension strictly less than 4[K : Q]

ym,red,fp
such that

XsymreaF, = JCo, UCaman-
(on

Theorem 4.1.14. Any continuous representation p : G — GSp,(F,,) admits a lift p : G — GSpy(Z,)

such that p ®z, Qp

potentially diagonalizable.

is crystalline with regular Hodge—Tate weights. Furthermore, p can be taken to be

Granting the Proposition 4.1.13 and Theorem 4.1.14, we prove:

Proof of Theorem 4.1.10. If a closed immersion of reduced algebraic stacks that are locally of finite type
over Spec Fp is surjective on finite type points (see [EG23, §6.6]), then it is an isomorphism. Thus, if we
prove that any p : Gx — GSp,(F,) is contained in some C,F, then the closed immersion UsC, 5 = —
Xsym,red,f,, from Proposition 4.1.13 isEn isomorphism. By Theorem 4.1.14, p is contained in the reduction
of a crystalline stack ‘XS}\ym X spt 0 Spec F, for some regular cocharacter A. By Proposition 4.1.6, the algebraic
stack Xs)\ym X Spf © Spec Fp is equidimensional of dimension 4[K : Q,]. So its underlying space is a union
of Cafp’ and one of them contains p.

It remains to show that C 5 descends to C, over Spec F. We need to show that Gal(F,/F) stabilizes

each component C_ F, C Xy . This follows because Gal(F,,/F)-action preserves the property of

ym,red,fp
being maximally non-split of niveau 1 and of weight o. O

4.1.15 Families of extensions

We prove the Proposition 4.1.13. The essential ingredient is generalizations of the Proposition 5.4.4 in [EG23]
which computes the dimension of families of extensions inside Xn,redfp' We start by introducing several
notations.

Recall that S (resp. Q) denotes the Siegel (resp. Klingen) parabolic subgroup of GSp,. We write Ug
(resp. Ug) for its unipotent radical and Lg (resp. L) for its Levi component. Then Ug ~ Gj‘f?’ and Ug is an
extension of GP2 by G,.
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We also need the following auxiliary groups. Let (4 be the minimal parabolic of GL,4 containing std(Q)
and U, be its unipotent radical. We define the following subgroups of Ug, ;

1« % 0 100 0 100 =
0100 01 0 x 01 0 =

Uo, = Uy = Up, =

@s 0010 s 00 1 =« Fa 00 1 =
000 1 000 1 000 1

Let ¢ : GLy — GLy4 be an involution given by ¢(4) = J~1A~TJ. Then (Ug,)* = Ug and ¢ : Ug, — Ugy-
Let R be a finite zp-algebra. Let 6 : Gk — GLa(R) be a continuous representation and y : Gxg — R*
be a continuous character. Then 6 @ (6¥ ® x) is Ls-valued representation of G and x @ 6 @ det(0)x ! is
L-valued representation of G'i. We write
Ads(0, x) : G “2029, 1o(R) A4 Aut(Us(R))

XPOPdet(8)x !
=

Adg(x.9) : Gx Lq(R) 2% Aut(Ug(R))

XPOPdet(8)x !
s

Adg,(x,0) : Gx Lo,(R) 2% Aut(Ug,(R)).

Note that G'k-action on Ug, and Ug, induced by Adq,(x,0) define subrepresentations of Adg, (x,0),
which we denote by Adg,(x,¢) and Adg, (x, 0) respectively. The isomorphism ¢ : Ug, 5 Ugqy induces an
isomorphism of G i-modules

AdQs (X’ 9) = AdQé (X7 9)

There is an obvious quotient map Up, — Ugq,. We can view Up, as the unipotent of standard parabolic
subgroup of GL4 whose Levi factor is GL3 x GL;. If ¥ : Gx — GL3(R) is a continuous representation,

we write
Pp®x Ad
Adp, (¢, x) : Gk —= GL3(R) x GL1(R) — Aut(Up,(R)).
Finally, we remark that there is an auxiliary embedding

taux : {(g,h) € GLa X GLg | det(g) = det(h)} — GSp,
a b

()

We now consider families of extensions valued in the Siegel parabolic subgroup. Let T be a reduced
finite type F,-scheme with a morphism 7" — XQ,redF,, whose scheme-theoretic image is of pure dimension
d. Welet y : Gx — F: be a continuous character. We write 67 for the family of G x-representations
corresponding to 7' — X5 yeq. Following the convention of [EG23], we write H2(Gx, Ads (07, X)) for the
coherent sheaf on 7' defined as the cohomology group of the Herr complex H?(C*(M)) on T where M is
the rank 3 étale (¢, I')-module corresponding to the family Adgs(f7, x) (see Remark 5.1.30 of loc. cit.).

We suppose that H2(G ¢, Ads (67, X)) is locally free of constant rank 7. Following the discussion before
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Proposition 5.4.4 in loc. cit., we find a complex of finite rank locally free Op-modules
Y — 73

such that coker(C9 — Z1) ~ HY (G, Ads(07,x)). Let V = Spec(Sym((Z+)V)). Then V parameterizes

a universal family of extension

0505, =0 ®@x—0

such that py, is valued in GSp,. This induces a morphism V' — Xg . 4 F, -

Lemma 4.1.16. Let T — &, F,o X and V' be as above. In particular, the scheme-theoretic image of
T — X, oq ¥, is of pure dimension d, and H?(Gg,Ads(0r, X)) is locally free of constant rank r. Then the
scheme-theoretic image of V. — Xsym,red,f,, is of dimension < d + 3[K : Q] + r — 1. Furthermore, if T is

generically maximally non-split of niveau 1, then the equality holds.
Proof. This follows from the proof of [EG23, Proposition 5.4.4]. [

We now consider the Klingen parabolic case. Let 6 : G — GL2(F,) be a continuous irreducible
representation. Let 7' be a reduced finite type Fp-scheme with a morphism 7" — &, || d4.F, whose scheme-
theoretic image is of pure dimension d. For each t € T(F,), H'(Gx, Adg(xt,0)) parameterizes p : Gx —
Q(F,) whose projection onto Lg(F,) is x; ® 6 @ det(6) x~'. However, the unipotent radical U is non-
abelian. To avoid using non-abelian cohomology, we construct a family of extensions in two steps.

Since 6 is irreducible, we have H? (G, Adg, (xr,0)) = 0. Similar to Siegel parabolic case, there exists
a locally free Or-module Z1 of constant rank with a surjection onto H'(Gx, Adg,(xr,0)). The vector

bundle V := Spec(Sym((Z})V)) parameterizes a universal family of extension
0— x7 — Yy — 0 —0.

By [EG23, Proposition 5.4.4], the scheme-theoretic image of V' — &; 4F, is of dimension < d 4 2[K :
Q-1

We can and do replace V' by its open dense locus of non-split extensions. Let § = det (5) and xy be
the pullback of yr to V. By local Tate duality, we have H?(G g, Adp, (¢, Xy 0)) = 0. Thus, there is
a locally free Oy-module Z{, of constant rank with a surjection onto H'(Gc, Adp, (¢, x7,'6)), and the
vector bundle W := Spec(Sym((Z{,)")) parameterizes a universal family of extensions

0 — Yy — py — det(p)xr — 0.

This induces a morphism f : W — &, 45 Wwhose scheme-theoretic image is of dimension < d + 5[K :
Q,] — 2 by loc. cit.. We replace W by its open dense locus of non-split extensions. Then W =W x X

4,red,Fp

Xsym rea,F, 1S again a scheme. We write f: W — Xg g 7, -

Lemma 4.1.17. Let 6,7 — XLred,E,’ and f: W — Xy
theoretic image of T' — X, | 4 F, is of pure dimension d. We further assume that H*(G ¢, x>0~ 1) is locally
free of constant rank r. Then the scheme-theoretic image offis of dimension < d + 3[K : Qp] +r — 1.

ym,red,F, be as above. In particular, the scheme-
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Proof. For w : SpecF — Xsym,redf ,

std(w)). We have the following commutative dlagram

we write W w) (resp. Wy(,,)) for the fiber of f at w (resp. of f at

f(w — SpecF

Wf (w) W XSym red,F.

~ | "

w X4,rcd,fp .

P

By [Stacks, Tag 0DS4], we have
dim W — dim Wy, < d + 5K : Qpl —

By the same Lemma, it is suffice to show dim W <dimW —2[K : Qp} + 7+ 1 in order to get the bound on
the dimension of scheme-theoretic image of f Recall that W is a dense open subscheme of a vector bundle
over V. For v : SpecF,, — V, we define W, := W xvy.,, SpecF,, and W, =W Xy, Spec F,,. To prove

the claimed inequality, we prove
dim W, < dim W, —2[K : Q] +r + 1. (4.1.18)

We first claim that the image of W, in W, is contained in a codimension 2[K : Qp] — 7 — 1 closed
subscheme of W,. By our construction, v correspond to a non-split extension 1, of 6 by x;, where ¢ is
the image of v under V' — T. Then 1, determines a class [c] € H'(G,Adg,(xt,0)). By the iso-
morphism ¢ : Adg, (x¢,0) 1> Adg; (xt,0), we get [¢/] := 1([c]). Any w € W,(F,) determines a class
[b] € H (Gx,Adp, (¥, x; *6)). Then w is in the image of W, if and only if [b] is mapped to a line F,[c’]
under the map

Hl(GK7 AdP4 (@va Xt_l(s)) - Hl(GK7 AdQé (Xh 9))
We take the long exact sequence of Galois cohomology to the following short exact sequence
0= X0~ = Adp, (¥, X7 16) = Adgy (x4,60) = 0.

Since dimg H?*(Gg,x367') = r, it shows that the set of [b] mapped to F,[c] is a subspace H' C
Hl(GK,AdpAl(z/)U,Xf 8)) of codimension 2[K : Q,] — r — 1. Recall that W = Spec((Z},)") where
Z} is locally free Oy -module with a surjection onto H* (G, Adp, (1, x3,'6)). Then W, = Spec((Z1)V)
where Z! := v*(Z}), and the image of W, in W, is given by the inverse image of H' in Z.. This proves
the claim.

Take w € W, (F,) in the image of W,. We compute the dimension of the fiber

Wy = WU X Wy w Spech.

If the dimension of Ww is zero, we get the inequality (4.1.18). Letp,, : Gx — GL4( ») be the continuous

representation corresponding to w. Then Ww parameterizes triples (p,,, ¢, «) satisfying the conditions in
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Lemma 4.1.2. One can easily see that ( ~ det(6). Suppose that (p,,, det(),a;) and (p,,,det(6), az)
are such triples. Since Aut(p,,) = F:, a5 ta; = c for some ¢ € F;. Then map (p,,, det(6), 1) —
(P> det (5) , a2 identity on p,, and multiplication by ¢~! on det (?) is then an isomorphism. Thus, there
is the unique up to isomorphism triple (5, det(6), ) parameterized by W.,. This shows that W,, is of

dimension 0. O

Proof of Proposition 4.1.13. Let o be a Serre weight. Then o ~ F(\) for A € X{(T') well-defined up to
(p—m) X (T). We identify \; to atriple (Xj 1, Aj2; Aj,3) asin §2.1. Then X' := (Aj 14X 24+ Aj 3, Aj1+A)3)
defines an element in X7 (T,)/(p — 7)X°(T,), and thus ¢’ := F(\') is a well-defined Serre weight of
GLa (k).

There exists an irreducible component Ca/,fp C & e 4F, of dimension [K : Q,] characterized as a
closure of the locus of G g -representations of the form

— 1 3
g= (X
0 xeo
__A5+(1,0 = . _ __
such that X1ur -1 @ X2ur, 1 = Hjej wK{Jj( ) for some t1,ts € F:, and moreover, if x1X5 1‘IK =z

then \j» = p—1forall j € 7 ifand only if ;x5 ' =&}

and the extension class is tres ramifiée (see [Le+a,
§7.4]). We call such nonsplit 6 as of weight o’. We recall some of its properties from the proof of [EG23,
Theorem 5.5.12] (corrected in [EG]). There exists an open substack U/, C Ca/,fp consisting of nonsplit [
of weight o’. Also, there exists a codimension 1 closed substack Cixed Ca',Fp containing dense locus of
nonsplit 6 of weight o’ as above with £, = 1. We let¢fixed = Clixed N7/, We can and do assume that Co’fp
(resp. U,) is obtained from Cixed (resp. Uxed) by taking unramified twists.

We write x,, for the continuous character [ | jer Esli;’n(ff(wr")) :Gg — F; . For nonsplit @ of weight o’ as

above, a direct computation shows that the dimension of H?(Gx, Ads (0, x,)) is equal to 1 if Yo x5 > =& !
and O otherwise. Note that x, x5 2 = 71 if and only if Aj1 — Aj2 is equal to O for all j € J or equal to
p—1forallj € J,and t3 = 1.

Suppose that A\;; — Aj2 = p — 1 for all j € 7, which we call trés ramifiée case. We let T be a F,-
scheme smoothly covering x4, Then H%(Gx, Ads (01, X)) is locally free of constant rank 1. Otherwise,
we replace U, by its open substack so that t3 # 1, and let T be a Fp-scheme smoothly covering U{,.. Then
H?(Gr,Ads (07, o)) is locally free of constant rank 0. In both cases, T is necessarily irreducible, reduced,
and of finite type over F,. By applying Lemma 4.1.16 and the preceding discussion, we obtain a vector bundle
has
the scheme-theoretic image of dimension 4[K : Q,,] — 1. We let Cafp be the scheme-theoretic image of the
unramified twists of py,. By Lemma 5.3.2 in [EG23], C, & has dimension 4[K : Q,].
ym,red,F, = Uy Cofp U Comau- If the union | J,, Co,f,, U
then the equality follows. Thus, we construct finitely many

V over T' parameterizing extensions py, of ?/\1/'* ® Xo by 07, and the induced morphism V' — XSym red F,

It remains to construct Cypq and prove that X
Csmay €xhausts all fp—points of XSym,re 4F,’
closed substacks of Xy .45, containing Fy-points of Xg g5, Which are not contained in all C, &
and take Cg,,,41; to be the union of such closed substacks.

For each Serre weight o, we define 2,/ := Ca'fp \Uy. It is an algebraic stack over F,, of dimension
< [K Qp] — 1. For each integer » > 0, there exists a locally closed substack Z,/, C Z; such that
H?(Gg,Adg (?za,vr, Xo)) is locally free of constant rank » (by upper-semicontinuity of fiber dimension).
It is easy to check that the dimension of Z, , is at most [K : Q,] — r — 1. When r = 0, there is nothing

to prove. When r = 1, the locus of nonsplit § in Z, , is contained in Cix4\¢/fx¢d which has dimension
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< [K: Qp] — 2, and the locus of semisimple 6 in Z4 » can be checked to have dimension < —1. When
r = 2, Z,/, only contains finitely many reducible split and non-scalar @ and thus has dimension < —2.
Finally, when r = 4, Z,. . only contains finitely many scalar § and thus has dimension < —4. Let T be
a F,-scheme smoothly covering Z, . By applying Lemma 4.1.16 and the preceding discussion, we get
a morphism V' — Xsym red, and the scheme-theoretic image of its unramified twists is a closed substack
Cor C XSmeed,fp of dimension < 4[K : Q,] — 1. It contains the locus of 5 in XSym7red7fp valued in
the Siegel parabolic subgroup whose Levi factor is up to unramified twist of the form 6 © Xagv for some 6
in Z5/ . The union of all C;,, and C, 5 = exhausts F,-points of Xgym,redF, Valued in the Siegel parabolic
subgroup up to conjugation.

Let {0; : Gk — GL3(F,)} be a finite set of irreducible representations such that any 2-dimensional
irreducible G i -representation with coefficients Fp is an unramified twist of some 6;. For each 0 < a <
p/ — 1, we have a morphism x, : G,, — X1,redfp corresponding to unramified twists of @w®. Note
that the scheme-theoretic image of x, is O-dimensional. There exists a nonempty open subscheme T, ; C
Gy, and the (possibly empty) closed subscheme 777, := G, \T,,; such that Hz(GK,X%M det (5)71)
(resp. H*(Gr, X7 det (5)_1)) is locally free of rank 0, (resp. of rank 1). By Lemma 4.1.17 and its
preceding discussioh with T = T, ; (resp. T' = T} ;), we obtain a morphism f C W o Xy
(resp. ]?C S We XSym,red,
fied twists is a closed substack C, 5. (resp. C, 5¢) of dimension < 3[K : Q,]. By its construction, C, 3.

ym,red,fp
+ ), depending on a and ¢, and the scheme-theoretic image of its unrami-
P

contains all F;,-points of XSym,re 4F, which are unramified twists of

w?® @ury  * *9
0; *3
w @ ur;-1 ® det (@Z)

N
I

such that the extension class #; is nonsplit (equivalently, x5 is nonsplit).

I:et Z C XQ; red,F, X X e 4F, bE the codimension 1 closed substack consisting of (61,6>) such that
det(61) = det(62). Since taux(f1 @ 62) is valued in GSpy after conjugation, we get an induced morphism
Z — Xsym,redfp whose scheme-theoretic image denoted by C, has dimension < 2[K : Q,] — 1. Note that
Z contains all p as in the previous paragraph with the condition that x; = 0 (instead of *; nonsplit).

The only remaining Gk -representations valued in GSp,(F,) are unramified twists of 4-dimensional
irreducible representations of the form Indgi . ﬁ(;((fjl) where K*/K is the unramified extension of degree
4,1 : K* < F is an embedding, and a is an integer. By taking the union of such finitely many families, we
obtain O-dimensional closed substack Cirreq in Xy, eq F, -

Finally, we take Cg,,q1; to be the finite union of closed substacks C;yreq, Co, C Cg 7 for all a and ¢,

a,@i’
and C,, for all o and r. It has dimension < 4[K : Q,)], and |J, C, F, U Csmau exhausts all F,-points of
Xom re 4F, This completes the proof. 0

4.1.19 Existence of crystalline lifts

In his thesis [Lina], Zhongyipan Lin developed an obstruction theory for lifting G g -representations val-
ued in reductive groups with mod p coefficients and applied it to prove the existence of crystalline lifts of
G i -representations valued in the exceptional group G2. As already mentioned in loc. cit., the existence
of crystalline lifts for classical groups follows from certain codimension estimates on the moduli stack of
(¢, T')-modules. We briefly recall Lin’s results and prove the Theorem 4.1.14.
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Recall that G = GSp,. We say that a G i -representation p : Gx — GSp,(F) is G-completely reducible
if for any parabolic subgroup P of GG containing the image of p, a Levi subgroup L of P also contains the
image of p. We can easily list all G-completely reducible G g -representations. Fori = 1,2, 3,let x; : Gx —
F* be a continuous character and let §; : G — GL3(F) be a continuous irreducible representation. Then

any G-completely reducible G g -representations are up to conjugation one of the following:
L x1®&x2® X3X2_1 @ X3X1_1 valued in T'(F);
2. 01 @ x30, valuedin Lg(F);
3.x19 a1X3X1_1 where x3 = det (91) valued in Lg(F);
4. taux(01 @ 62) where det(61) = det(6) and;
5. p: Gk — GSp,(F) irreducible as 4-dimensional representation.

In all cases, one can easily find explicit crystalline lifts using the crystalline lifts of irreducible G  -representations
(e.g. the proof of [EG23, Theorem 6.4.4]).

It remains to prove the existence of crystalline lifts of p : Gx — GSp,(F) that factors through either
S(F) or Q(F). Suppose that 7 factors through S(F) and denote its Levi factor by @ & X0  where 0 :
Gk — GLy(F) is a continuous representation and ¥ : Gx — F* is a character. Then p corresponds
to an extension class [¢] € H'(Gk,Ads(d,X)). In this case, the G c-module Adg(0,%) is abelian. By
[EG23, Theorem 6.4.4], we can find crystalline lifts § : Gx — GLy(O) of § and x : Gx — O* of
X with Hodge-Tate weights given by regular dominant cocharacters A = (\j1,;2);es € X«(Ty) and
= (1j)jes € X.(TY) respectively. Then x0" has Hodge-Tate weights ' = (11; — Aj2, b — A\j1)jes-
Twisting 6 by a crystalline character with sufficiently large Hodge—Tate weights with trivial mod p reduction,
we may assume that A is slightly larger than X' (i.e. \j2 > —X;1 4+ p; +1forall j € 7, and the inequality
is strict for at least one j). Let R = Rg be the crystalline framed deformation ring of # with Hodge—Tate
weights A\. Then the proof of Theorem 6.3.2 in loc. cit. easily generalizes to our setup and shows that there
exists a crystalline lift ¢’ : G — GL2(O) of 0 with Hodge-Tate weights ) lying on the same irreducible
component of Spec R that 6 does, and a lift p : G — S(O) of p with Levi factor 8’ & x6". By Lemma
6.3.1in loc. cit., p is crystalline.

Finally, we suppose that p : Gx — GSp,(F) factors through Q(F) with Levi factor p** = ¥ @
0 det (?)X‘l. We may assume 6 is irreducible; otherwise p factors through S(F) and thus its crystalline
lift exists by the previous paragraph. As in the previous paragraph, we can find crystalline lifts  : Gx —
GL2(O)of @ and x : Gx — O* of ¥ with Hodge-Tate weights given by regular dominant cocharacters A\ =
(N1, Aj2)jes € Xu(Ty) and 1 = (i) jes € X«(TY) respectively. Then Adg(x, ) /x> det(0) ™" ~ x0Y
has Hodge-Tate weights given by (11; — Aj2, ft; — Aj1) e By twisting x, we may assume that p1; > Aj 1
for all 7 € J and the inequality is strict for at least one j.

Let Rg (resp. R%) be the crystalline framed deformation ring of @ (resp. ) of Hodge-Tate weight A
(resp. p). We let X = Spec R be an irreducible component of Spec Rg@oR%. We let ™Y G —
GLy(R) and x"™V : G — R* be the universal families.

Theorem 4.1.20 (Theorem A in [Lina]). Let [¢] € H'(Gx,Adg(X,0)) be the class corresponding to p.
Recall that we assume p > 2. Suppose that



CHAPTER 4. MODULI STACKS IN P-ADIC HODGE THEORY 55

1. for each s > 1, the locus
X, :={x € Spec R | dim k(x) ®p H*(Gr, x"™™ (0"™)V) > s}

has codimension > s+ 1in X;
2. there exists a finite extension K' /K of degree prime-to-p such that % (G i) has p-power order and;

3. there exists a zp-point of Spec R whose restriction to G is mildly regular in the sense of [Lina,
Definition 3.0.1].

Then there exists a Z,-point of Spec R corresponding to 0’ : G — GLa(Z,) and X' : G — Z; and a
class [c] € HY(Gk,Adg (', 0)) lifting [c].

We now explain how the assumptions in the previous Theorem hold in our setting. By the irreducibility
of 0, H?(G g, x"™V(#"™V)V) = 0 and item (1) follows. Item (2) follows from the fact that both  and § have
images of order prime-to-p. For item (3), we take the O-point of Spec R given by # and x. By the condition
on Hodge-Tate weights, we have H' O(G K’ X29V) = 0 (this is the condition (MR1) in [Lina, Definition
3.0.1]). To verify the condition (MR2) in loc. cit., which asserts the non-degeneracy of the quadratic form
defining the cup product on Lyndon-Demuskin complex, we follow §A in loc. cit.. Since p**|¢, , is a trivial
representation, the computation is much simpler. If we identify the underlying 2-dimensional vector space of

x0" as

Go ® G, ~ Uo/Z(Ug)
1 =y
mod Z(Ug),
1 —z
1

then the quadratic form defining the cup product on Lyndon—Demuskin complex (see §2 and §A in loc. cit.)

o . M
is given by a matrix where

21

0 1
-1 0

0 1
My ="My = -1 0

0 1
-1 0

Thus, the quadratic form is non-degenerate. By Theorem 4.1.20, there exists a lift of p which is further
crystalline by the condition on Hodge—Tate weights.
In all cases of p, the crystalline lift p is ordinary when restricted to G- for some finite unramified

extension K'/K. Thus p is potentially diagonalizable as explained in Example 4.1.12. (]
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4.2 Symplectic Breuil-Kisin modules

We start by recalling the definition of Breuil-Kisin modules with tame descent data. We refer [Le+a, §5.1]
for further detail.

Let 7 : Iq, — T, (O) be a tame inertial L-parameter with 1-generic lowest alcove presentation (s, 11).
Let 7 be the order of s.. We write f' = fr and let K’/K be the unramified extension of degree r. We
fix a choice 7’ = (fp)l/(”f/’l). Welet L' = K'(7') and A = Gal(L'/K). For an O-algebra R, define
&1 r = (O ®z, R)[u']. It is equipped with an endomorphism ¢ and A-action such that

6%/71% = GK,R = (OK ®zp R)[[UH

where v = (u’)pf/_l. Let 7' = Homg, (O, O). We have a decomposition &1/ r = D, cqr R[]
where O acts on j’-summand through the map j'. For any &1/ gp-module M, we let MU") be the R[u/]-
submodule of M such that O acts by j'.

Let & > 0 be an integer and R be an O-algebra. A Breuil-Kisin module of rank n, height in [0, 4], and

type T with RR-coefficients is a projective &,/ r-module 91 of rank n equipped with

* an injective &1+ r-linear map ¢on : * (M) — M whose cokernel is annihilated by E(v)" where
E(v) = (v+p)

* asemilinear A-action commuting with ¢9n such that
M) mod v’ ~ 7V @0 R

as A’ := Gal(L'/K')-representation for each j' € J’.

We write Ygo’h]’T(R) for the groupoid of Breuil-Kisin modules of rank n, height in [0, 4], and type 7 with
R-coefficients.

Remark 4.2.1. Note that we can change the r above by any integer divisible by the order of s.. Using this,
we can always interpret Breuil-Kisin modules with different descent data as modules over a same base.

Definition 4.2.2 (cf. Definition 2.1.9 in [EL]). For M € V%" (R), we define MY € V;*""" (R) by

setting
WV = HOIn@L,’R(Qﬁ, 6L’,R)
with induced semilinear A-action and ¢gyv : ©* (IMY) — MY given by the formula

P (f)(m) = o(f(dar (E(v)"m)))

for all f € MY and m € M. Here ¢y (E(v)"m) makes sense because of the height condition and that ¢y

is injective.

Definition 4.2.3. For: = 1,2, letn; > 1 and h; > 0 be integers and 7; be a tame inertial L-parameter valued
inT . For M; € V%7 (R), we define a Breuil-Kisin module

S):)’tl ®6L/)R m2 S Y[07h1+h2}77—1®7—2 (R)

nin2
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by defining ¢on, g, := dom, @ dam, and taking A-action induced by A-actions on 91y and M.

Whenn = 1 and h = 0, we write Y, := Y/*%" For 0t € V,>" the evaluation map N@NY — &1 &
is an isomorphism of Breuil-Kisin modules.

Let7 : Iq, — TV(O) be a tame inertial L-parameter. For simplicity, we write Yio’h]’T to denote
Y[O,h,],std(r)
fi .

Definition 4.2.4 (cf. Definition 2.1.17 in [EL]). A symplectic Breuil-Kisin module of height in [0, k], and
type 7 with R-coefficients is a triple (M, N, a) where M € Y7 (R), M € Y™ and o : M ~
MY @ N satisfying the alternating condition

(" @N) toa=—1lgy.

We write YS[S;ELT (R) for the groupoid of symplectic Breuil-Kisin modules of height in [0, h] and type 7 with
R-coefficients.

oge [0,h],7 [0,h],7 0,sim(7) . .
Proposition 4.2.5. The map Yg """ — Y} xoY] sending (M, N, «) to (M, N) is representable

0,h],7

by schemes. In particular, YS[yrn

is p-adic formal algebraic stack.

Proof. Let R be a p-adically complete O-algebra and S = Spec R. Consider a S-point (Mg, MNg) €
VIO x o V2ST)(S). For any S-scheme S’, we write (Mg/, MNg/) for the pullback of (Mg, Ns) to

S’. The fiber product YS[S;Z]’T X yl0hlr oy 0sim(r) S is the subsheaf ag of Isom (Mg, MY ® Ng) given by
4 1

ag: 8" = {a € Isom(Mg, MS, @ Ng/) | ()Y @Ng)F o = —1on,, }

for any S-scheme S’. The sheaf Isom (Mg, MY @ MNg) is representable by affine scheme by [Car+22,

Proposition 3.1.3]. There is a cartesian square

Qg S

l [

Isom(Mg, M @ Ng) —— Isom(Mg, MG @ Ng) xg Isom(ME @ Ng, Mg) —— Aut(Mg)

where the right verticle map is a constant section given by —1gy, € Aut(Mg), the left bottom horizontal
map sends « to (o, (¥ @ MN)~1), and c is the composition. This shows that a g is representable by scheme.

The claim that YS[S’IZ]’T is a p-adic formal algebraic stack follows from [Eme, Lemma 5.19]. O

We recall several notions regarding Breuil-Kisin modules. We refer [Le+a, §5] and the references therein
for more detailed discussions.

Let 8 = (8U"),c7 be an eigenbasis of M € V!
the dual basis ¥ = ((8U"))Y); e is an eigenbasis of 9.

0,h],w (in the sense of [Le+a, Definition 5.1.6]). Then

Definition 4.2.6. Let (1,0, a) € Y[O’h]’T(R). An eigenbasis of (9, N, «) is a pair (5,) of eigenbasis

Sym
B=(BYU))jicq of Mand y = (7)) ;i of N satisfying

a(g(j’)) — ((5(j’))v @7(3"))1
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Let (M, N, ) € YS[SLZ]’T(R) be a symplectic Breuil-Kisin module with eigenbasis (3,~). For j' € J’,
we write Cg{?g € M,(R]u']) for the matrix representation of qﬁgt/ ) with respect to * (U =1 and gU".
The height condition implies £ (u')"(Cs;),) ™" € My(R[u']).

Recall that (s, i1) is a 1-generic lowest alcove presentation of 7. For j' € J', we write j' = jo + fk for
unique 0 < j < f —1and 0 < k <r — 1. Define

o — s;k(sjjils;; . Sfij)(/lf—j +np_;) ifj7#0
Ho + 7o if /=0
R A ‘ (4.2.7)
(@) =3 ol
i=0

k 1
4 U

_ -1 1 —1
Sor,jt = 8 St 1S; 9---8j11)-

Then we “remove the descent datum” and get the matrix

AG s = Ad(@(s) ;) " o(—(2) ) (W) (CS ) € Ma(R[])

that is upper triangular modulo v for each j° € J’. By height condition, we have E (v)h(AE(g{’)ﬁ)_1 €

My (R][v]) which is upper triangular modulo v. Both C%;)ﬁ and Ag{’)ﬁ only depend on j’ mod f. Since
a(BU) = ((BUD)Y @ ~4U").J, we have the following symplecticity property of matrices ng;ft’)ﬁ and Ag{’)ﬁ.

0,h], 7
ym

Lemma 4.2.8. Ler (9, M, o) € YS[ (R) with an eigenbasis (3, ).

1. The partial Frobenius matrix Cg;% satisfies

In particular, we have ng:)@ € GSpy(R[v] [ﬁ])

2. Similarly, we have
(AG ) T TAG)s = AS) E(v)".

In particular, for p-adically complete R, we have Ag{)ﬁ € LGo(R).

Proof. We can show that (8Y ® v).J is an eigenbasis of MY @ N and

(3" _ " h—1,~G) =T
Convem,(avams = CasE@)" T (Conp)™ T

("
MY RN, (BY @) J*
module and its eigenbasis. O

and similarly for A Then the claim follows from the definition of symplectic Breuil-Kisin

We record how Agg{)ﬁ changes under the change of basis.

Proposition 4.2.9. Let (M, N, o) € Ygg;ﬁ]’T(R) with an eigenbasis (51, 7v1). Suppose that (B2, 72) is another
eigenbasis such that, for each j' € J’, ﬁéj’) = ﬁ{j/)DU,) and fyéj,) = 'ygj/) sim(DU")) for some DU e
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GSp,(R[w]). Define
107 1= Ad(d(s0,30) ™ o= (@)U () (DY),

Then 1Y) € Z(R) and it satisfies

AGDs =190 AG), (Ad((s5 )by + 1) (0)) (9(I9~D)~1))

where j € J, j = j' mod f.
Conversely, for any IU Nerz (R) only depending on j' mod f, then the matrix

DU = Ad(¢((a)97) (u)(sfr ;)T € GSpy (R[],

and (B2, 7v2) given by B ;v = ﬁlyj/D(j') and 2 1 = 1,5 sim(D(j/)) is an eigenbasis.

Proof. This essentially follows from [Le+a, Proposition 5.1.8]. Note that the conditions ﬁéj )= ﬁj ) pi"
and 7Y = 4 sim(DU)) imply that (Bs,72) is an eigenbasis. O
Definition 4.2.10. Let (M, N, o) € Ys[(y)’rﬁ]’T(F). We define the shape of (901,91, @) to be the unique element
7 € WY+ such that Ag{)ﬁ € I(F)z;Z(F) for some eigenbasis (3, y) and for each j € J. By Proposition
4.2.9, this is independent of the choice of eigenbasis.

For integers a < b, we define L[*%Gy to be the subfunctor of LG given by
LGy (R) = {g € LGo(R) | E(v)™g, E(v)'g* € My(R[v +p])} .
for O-algebra R. It is preserved by left and right multiplication by Lt G». We write

Gr[él’(l;] = L+Q@\L[“’b]go

)

for the induced sub-ind-scheme of Grg . For (s,u) € WJ x X*(T)7, we define (s, u)-twisted ¢-
conjugation action of (Lt Ge)7 on (LI**Gy)7 by

(I)seq - (AD)jeq = (IDAD(AdG(s; Dol +n))(@V) 7)) .

Similarly, we define (s, u1)-twisted conjugation action by the above formula, but with the ¢ dropped. We
denote by [(LI*¥1Go)7 /., (5,0 (LT Go)7] the fpge quotient stack using (s, 1)-twisted ¢-conjugation action.

Let Ys[g,’rg]’Tﬁ be the fpgc-stackification of a category fibered in groupoids over Spf O sending R to a

groupoid of tuples (9%, N, o, B, ) where (M, N, a) € YS[S,’IZ]’T(R) and (3, ) is an eigenbasis of (9, N, ).

By Proposition 4.2.9, Ys[(y)ﬁ]’ﬂﬂ is L+GJ-torsor over YS[%:LT.

Proposition 4.2.11. The morphism YS[S,;Q]’T’ﬁ — (LIOMGH)T sending (I, N, o, B,7) to (Ai%)ﬁ)‘y induces

an isomorphism of p-adic formal algebraic stacks Ys[g;ﬁ]’T ~ [(LIOMGo)T /o, (s (LT Go) e, Here, A,

denotes the p-adic completion.

Proof. This can be proven as [Le+a, Proposition 5.2.1] using Proposition 4.2.9. O
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Recall that Grg r is equal to the affine flag variety F1 = Zg\L(GSp,)r. For integers a < b, let
L1*Y(GSp, )¢ denote the functor defined on F-algebras R by

LI (GSp,)r : R — {A € LGSp,(R) | Av=%, A~"" € My(R[v])}.

The fpqgc quotient [Zg\ L%/ (GSp, )g] is isomorphic to a Noetherian closed subscheme F11*) ¢ FI. Note
that Gr[ga”lg] C F1* where the inclusion is strict.
We define

Zyr: R— {A € GSpy(R[v]) | Amod v € U(R)}

—~a,b a L. ~ [a,b
and Gr[ga’F] := [Ty p\LI**IGg]. Ttis a Ty -torsor over Gr[g,’}l;]. Similarly, we have - Ty ¢\ LY (GSp,)r

which is a Ty -torsor over F11%%].

Proposition 4.2.12. Suppose that the lowest alcove presentation (s, u) of T is (h + 1)-generic. There is an

~ =0k
isomorphism between algebraic stacks 7, ) : Ys[grﬁ]]_: — [(Gr[gFI )j/(svﬂ)TlﬂY’j].

Proof. This follows from Proposition 4.2.11 and [Le+a, Lemma 5.2.2]. Note that (1(/)) jeg inloc. cit. is an
element in GSp, (R[v])7 if and only if (X;);e7 in loc. cit. is an element in GSp4(R[v]). O

Recall that, for each Z € WY+, there is a subfunctor ¢4(3) = [[je s UE) C LG7 . For any integers

a < b, we define
Ulet(z) =uU@)on LG

The natural projection map U[*(2) — (Grg?_ ’g)j is an open immersion by Proposition 3.1.5. Since
Grg) F = F17 is ind-proper and its 77 -fixed points are exactly 2 € wYI, U (Z)r form an open cover
of Grg . Also we have T'7 -torsors

UE):=T"7UE) - UE)
Ul (2) .= 17U () - U (z)ledl,

D).

T Y[O,h],‘r

The images of U(E)Lf’b] (resp. U (Z ;?’b]) form an open cover of (Gr[g(ﬁ’lg])J (resp. ((Tr[ga
Recall that YS[(;;Z]’T is a p-adic formal algebraic stack, which implies Ys[g;z] = lim, Yo" Xspro

Spec O/w". The algebraic stack YS[g;ZLT X spf 0 Spec O/w’ has the same underlying topological spaces for

all © € Z-(. There is a bijection between open substack of given algebraic stack and open subsets of its

underlying topological spaces (see [Stacks, Tag 06FJ]). Thus there is bijection between open substacks of

YS[S’II’:]’(;/W = Ys[g’rﬁ]’T X spf 0 Spec O/w’ and open substacks of Ys[grﬁ]FT

Definition 4.2.13 (cf. Definition 5.2.4 in [Le+a]). Letz € WV-J

1. We define YS[S,IZ]FT (2) to be the open substack of YS[S,;Z]’T corresponding to

s

— N[Ovh]
TN @)/ (o Te") € [(Grg ) o]

under the isomorphism 7(, ). We write Ys[g’rﬁ]g i (Z) to be the open substack of Ys[g’rg]g i induced
0,h],7

by YS[ym,F (Z) .


https://stacks.math.columbia.edu/tag/06FJ
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(Z) of Y01

Sym

2. We define the p-adic formal open substack Y[O h. "(2) = lim, YSym O /w

3. Let R be a p-adically complete O-algebra. We say that (91,91, o) € YS[O hl "(R) admits Z-gauge if
0,h],
(M, 9, 0) € Yo7 ()(R).
4. For (M, M, ) € Ys[g’rg]’T(E)(R), we define a Z-gauge basis of (901, 91, o) as an eigenbasis (5, y) such
that Agggﬁ € ZJ(EJ)(R) forall j € J.

Proposition 4.2.14. Let (s, 1) be a (h + 1)-generic lowest alcove presentation of T. Let R be a p-adically
complete O-algebra and (I, N, a) € YS[O ol "(2)(R). If M admits an eigenbasis, then 9 admits a Z-gauge

basis, and the set of Z-gauge bases is a TV (R)-torsor.

Proof. Note that if (8, ) is a z-gauge basis for (91,91, ), then 3 has to be a z-gauge basis for M in the
sense of [Le+a, Definition 5.2.6]. By Proposition 5.2.7 of loc. cit., 90T admits a z-gauge basis [, and the set
of such basis is T 7 _torsor. Let ~ be any eigenbasis of 91. Since (Y ® v)J and «(j3) are Z-gauge basis of
MY @N, there exists t € T, (R) such that a(B;) = (B ®@v;)Jt; for j € J. Then the alternating condition
implies that tht;1 = J. Let 8/ = Bt for some t' € T,”” (R) and v/ = ~c for some ¢ € (R[v]*)7. Then
()" = BY(¢') " and

a(B)) = ((8))Y @)t Jtjt;c; " foreach j € J.

The condition on ¢ implies that there exists t; and ¢; such that t; J t;- = ¢;J tj_l for each j € 7, and the
solution gives a Z-gauge basis (3',7) of (M, N, a). Since the set of solutions is a T+ -torsor, the set of

Z-gauge basis is a T 7 -torsor. O

Let A € X.(TV)7 be a dominant cocharacter such that std()\;) € [0,h]* for all j € J. There is a
Sstd(), Y[O’h]’T (e.g. [Le+a, §5.3]). For simplicity, we write
Y<’\ " instead of Y<Std(’\) which is defined as a O-flat part of

YS[S,H}IL] Xy fon.r Y, =M. For any finite extension E'/E with the ring of integer O’, (0, N, a) € Ys[gﬁ] (0

belongs to (M, N, ) € Ys<yf‘nT(O’ ) if and only if the elementary divisors of Agt), s € GSp,(E'(v+p))) (for
any eigenbasis (3, ~)) is bounded by E(v)*s for each j € J. In particular, (Agl) 5)jes gives a E'-point in
Sr(A\) C Grg - We have its open substack

O-flat closed p-adic formal substack Y

. We have its symplectic variant YsymT

<)\ <A, [0,h],T
SymT (M) YSymT YS[S;:] YSym (M) .

Remark 4.2.15. For any finite extension F//F, Y,=*7 (F') is the full subgroupoid of Y4[07h] ""(F') consisting
of Breuil-Kisin modules whose shapes lie in the set Adm"” (std(\)) by [CL18, Proposition 5.4]. By Lemma
2.1.6, YS<’\mT(F’ ) is the full subgroupoid of YS[0 LT "(F') consisting of Breuil-Kisin modules whose shapes
lie in the set Adm" () ~ Adm" (std()))®.

On the local model side, recall the Pappas—Zhu local model M 7 (< \) C Gr?:g’j. We have its open
neighborhood at Z defined by U (%, < \) := M (< A\)NU(Z)o. We also write U (Z, < ) := Tg’j xU(z, <
A).

Theorem 4.2.16. Let (s, p) be a (h+ 1)-generic lowest alcove presentation of T and let Z € WV-I . We have
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a local model diagram of p-adic formal algebraic stacks over O

Uz, <\
<A\,7 o7~ v, T Ap _ A
YS;/m (2/) = |:U(Z7 < )\)/(S,H)TO :| U(Z, < )\) P

where diagonal arrows are Tg’j—torsors. The superscript \, means taking p-adic completion.

~ Ap
Proof. We need to show that YSE,;’T(E) = [U (Z, <N/, #)T(g’j} . Let YSE;\AT’B (2) be the fpge-stackification
of a category fibered in groupoids over Spf O sending R to a groupoid of tuples (91,91, «, 5,) where
(M, N, ) € YENT(Z)(R) and (3,7) is a Z-gauge basis of (9,9, ). For a ring of integer O’ in a finite

Sym

extension F’/E and (M, N, o, B,7) € YSE,;\I;T’B(Z)(O’), (Agg%)’ﬁ)j € U(Z, < \)(O') by the characterization
of Y&, and the definition of gauge bases. Since Yg,n™" (%) and U(Z, < A\)*» are O-flat, this induces

a map Ysgyi‘rf’ﬁ(a — U(Z,< M) sending (M, N, av, B,7) to (Agt),g)J, which induces an isomorphism

<A\, T ~ | Tr~ v, J Np .
Ysm (2) = UZ <A/ snTe’ by Proposition 4.2.9 and 4.2.14. O

Corollary 4.2.17. Under the hypothesis in Theorem 4.2.16, Y17 (2) # 0 if and only if Z € Adm" ()).

Sym

Proof. The stack YSSyQT (Z) is nonempty if and only if U(Z,< A) # (). By [PZ13, Theorem 9.3], M 7(<
AMF = Useadm” (055 (5). Then U(Z, < A) # 0 if and only if Sg(5) NU(Z)F for some 5 € Adm" ()). The
last condition is equivalent to 2 € Sg(3) for some 5§ € Adm" () by [Le+a, Lemma 4.7.1] (which easily
generalizes to our setup). Then the claim follows from the standard description of torus fixed points of affine

Schubert varieties. O

4.3 Symplectic étale po-modules

In this section, we fix a dominant cocharacter A € X.(T')7 such that std(\;) € [0,h]* and a 1-generic
inertial tame type 7.

Let n > 0 be an integer. The ring O¢ x := W (k)((v))"» is equipped with Frobenius endomorphism ¢
extending usual Frobenius on W (k) and sending v to vP. For p-adically complete Noetherian O-algebra R,
@-Mod%"(R) is defined as the groupoid of rank n étale -modules with R-coefficients. It is known that
@-Modi?" is an ind-algebraic fppf stack over Spf O [EG23, Corollary 3.1.5].

Objects of @—Mode}?"(R) are given by rank n projective modules M over Og¢, K@)ZPR equipped with
an isomorphism ¢ : ¢*(M) = M. For each j € J, we have an induced morphism d)%l) : MUY
M) We also define MY € @-Mode}?n(R) the dual étale p-module of 9T whose underlying module is
Homog,K®ZpR(M’ O&Kéész) and ppqv : p*(MY) — MY given by a formula

dav () (m) = @(f(dy (m))

forall f € p*(MY) = Homog‘m@sz(go*(M), O¢ k@7, R) and m € M.

We define @-Modi?sym as the moduli stack of symplectic étale p-modules whose objects are given by
triples (M, N, @) € ®-Mod:®™(R) where M € ®-Mod:*(R), N' € ®-Mod%'(R), and a : M 5
MY ®0¢ Bz, R N satisfying alternating condition (o @ N) 1 oa = —1.
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Proposition 4.3.1. The map ®-Mod:>™ — &-Mod:* x o ®-ModS:' sending (M, N, a) to (M, N) is
representable by algebraic spaces. In particular, @-Mod%sym is an ind-algebraic fppf stack over Spf O.

Proof. This can be proven as Proposition 4.2.5 using [EG23, Corollary 3.1.5] instead of [Car+22, Proposition
3.1.3]. O

Definition 4.3.2. Let R be a p-adically complete O-algebra and (M, N, a) € ®-Mod:™™ (R). A basis of
(M, N, a)is apair (8,7) = (89)jer, (v9));e7) where for each j € J, 31 (resp. 47)) is a basis for a
rank 4 (resp. 1) free R[v][1/v]"»-module M9 (resp. A"(9)) such that

a(B9) = ((89)Y @)

Lemma 4.3.3. Let R be a p-adically complete O-algebra and (M, N, a) € ®-Mod%™™ (R).

1. If (B,7) is a basis of (M, N, ), then the matrix representation of qi)g\j/z (resp. d)j(&) ) with respect
to the basis 39~V and BY) (resp. YUY and 7)) is given by a matrix AY) € GSp,(R((v)"?)
(resp. sim(A) € (R((v))"?)*).

2. If (B1,m) and (B2,72) are basis of (M, N, ) such that ﬁéj) = §j)Aj and véj) = ’yy)cj for some
Aj € GLy(R((v)"*) and ¢; € (R((v))"»)*, then Aj € GSp,(R((v))"?) and ¢; = sim(A;).

Proof. Ttem (1) can be shown as Lemma 4.2.8. Item (2) follows from a direct computation using the condition
a(BY)) = (B9)" @A D).] m

For a tame inertial type 7’ valued in 7)Y (E), there is a morphism &,/ : Y0 @-Mode}?" repre-

sentable by algebraic spaces, proper, and of finite presentation ([Le+a, Proposition 5.4.1]).

Given M € V""" (R) and an integer m > 0, we define M(m) € Y™™ (R) to be the Breuil-
Kisin module whose underlying module is 91 and the Frobenius endomorphism is given by ¢oy(;m) =
E(v)™ ¢on.

We define a morphism of ind-algebraic fppf stacks over Spf O

er  YaorhT — &-Mod§g™™

(mv N, Oé) = (gstd(‘r) (m)a Esim(r) (m(h))a Estd(r) (Oé))

Remark 4.3.4. Note that the dual of Breuil-Kisin module and étale ¢-module are not compatible. This
is because of E(v)" in the formula defining the Frobenius of dual Breuil-Kisin modules. This is why
We USe Egim(7)(M(h)) instead of egp,(r)(N) in the definition of €, so that we still have e (9" @ N) =
Estd(r)(M)Y @ Egim(r)(M(R)). In particular, this explains that e5q(, () is well-defined.

Proposition 4.3.5. Suppose that 7 is (h + 1)-generic. The map ¢, : Ys[g’rﬁ]’T — @—Modi@sym is a closed

immersion.

Proof. By [Le+a, Proposition 5.4.3], ¢, : }Cfo’h}’T — <I>—M0d‘j’,24 is a monomorphism. Then e, is fully
faithful by [Stacks, Tag 04ZZ]. As a result, the diagram

0,h], T Er ét,Sym
Y10l ®-Mod$LS

Sym

! J

[0,R],T 0,sim(7) Estd(r) XEsim(7) ét,4 ét,1
Y4 XSpf © Y1 —_— (I)-MOdK XSpf © @-MOdK


https://stacks.math.columbia.edu/tag/04ZZ

CHAPTER 4. MODULI STACKS IN P-ADIC HODGE THEORY 64

is cartesian, and the claim follows from [Le+a, Proposition 5.4.3]. O

Lemma 4.3.6. Ler (0, M, a) € Y[O’h]’T(R) and (M, N e.(a)) = . (M, N, ). If (8, 7) is an eigenbasis

Sym .
of (MM, N, a), there exists a basis (b, ¢) of (M, N, e.(a)) determined by (3,) such that ¢§\J/2 with respect to
b is given by Ag})ﬂs;lvﬂj +n;

Proof. The existence of b follows from [Le+a, Proposition 5.4.2]. Then there is a unique ¢ such that (b, c) is

a basis of (M, N, e, («)). O

Let a < b be integers. There is a natural map
ik [[(L1YGSp,)pZ; — @-Modg™™
JjET
(A(j)gj)jEJ = (MaN7 a)
where M (resp. N) is a free rank 4 (resp. 1) étale p-module such that ¢5\j,2 (resp. (;5%)) with respect to the

standard basis is given by A(j)Ej (resp. sim(A(j)Zj)) and « is given by the matrix J with respect to the
standard basis of M and its dual basis. We also define a closed subscheme
~ [a,b] [a,b] ~ ~J
Fl s = [[ (@r\(L"GSp,)rZ;) C FI.
JjeET

~lab] |
We denote by TIX ’j—conj a TPY 7 _action on FIE;E] given by

(Dj)jeq - (TipAYZ))jeq = (DT p AV D) je g

. ~ [a,b
for (D;)jes € Ty and (T, pAVZ)) e 7 € F1f7~]

Proposition 4.3.7. Suppose that z = 0~ t,..,, where v is (b — a + 1)-deep in C,,. Then the morphism

induces a monomorphism

~ [a,b )
Lzt [Flg,;/T%/’j-COnj] N (I)_Mod;zSym-

Proof. By Lemma 4.3.3 and [Le+a, Lemma 5.4.4], the morphism (% factors through a monomorphism

[T] (L1 GSp,)rZ; /o Tr] — ®-Mod5e™™,
JjeET

~ [a,b .
and the source is isomorphic to [Fl‘[7—z~] /Ty 7 _conj] by Lemma 5.2.2 in loc. cit.. O

By combining Proposition 4.2.12, Lemma 4.3.6, and Proposition 4.3.7, we obtain the following result.

Proposition 4.3.8. Let a < b, h > 0 be integers and z = JiltVJrn € WYJ such that v is (b—a+1)-deep
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in C,. Suppose that (Grg)”;f]’J)

w*(1) C Fl?’?. Then we have a commutative diagram

0,h],T T« (s
M7(<Np —— Gr[g BT Loy Flj Flj /Tv J—Conj]

—

<\, 7 [0,R],7 Er ét,Sym
YSym,F ’ YSym F ®-Mod

where all hooked arrows are closed immersions.

4.4 Local models for potentially crystalline stacks

We have a canonical morphism e, : X,, — @—Modi?" constructed in [EG23, Proposition 3.7.2] which cor-
responds to restricting G'i-representations to G i __ -representations when evaluated at complete Noetherian

finite local O-algebras. We have an induced map € : Xgym — Q)-Modét’sym.

Proposition 4.4.1. Suppose 7 is (h+2)-generic. Then the map €, : Xs[grﬁ]’ — - Modet SYm s a monomor-

phism.

Proof. This follows from [Le+a, Proposition 7.2.11] using the argument given in the proof of Proposition
4.3.5 O

We define X207 (resp. XSMT Y to be the union of X2 7 for all dominant (resp. regular dominant)
Sym p- Sym reg Sy p. reg
cocharacters \’ < \. Similarly, we have X4 o .

Recall the O-flat closed substack Y4[ T Ve (resp. Y<’\ ™ v"0) of Y4[O’h]77 (resp. YEA’T) defined in
[Le+a, §7.2]. It’s key property is that if 7 is (h + 2)-generic, then Xio’h]’T — (I>—Modét’4 factors through
Y07V and induces isomorphisms X[ ~ vV and SMT ~ YNV We define YS[O 7 Voo
(resp. YSyi\nT Vo) to be the O-flat part of Y[O k. Xy fon.r YJO’h]’T’V“ (resp. Ysyil Xy Y<)‘ ™ v""). We
have the following result.

[0, h],T Voo

Proposition 4.4.2. Suppose that 7 is (h + 2)-generic. The map e, factors through Ys, and induces

~ Y107 Voo AT L yvSAT Ve
Ysom’ and X, ~Yq

0,h
isomorphisms X, [0.1],7 Sym Sym

Sym

Proof. Since €, and ¢, are fully faithful, we have

0,h 0,h 0,2h],sim (7
Pl ((X[ 17 02

ét,Sym
» wn B-Mod®tS )
©-Mod* x &-Mod}; K O-flat

[0,h],7,V s [0,h],7,V s [0,2h],sim(T) ) ) ét,Sym
Ysym ' (Yy x Yy ) X -Modt! xo-Moatt P-Mody

O-flat

where the subscript O-flat means taking O-flat part. Then the claim follows from the corresponding result
for GL4 x GL; in [Le+a, Prop 7.2.3]. O

We assume that 7 is (h + 2)-generic until the end of this section. By using the previous Proposition, we

consider X[O’ b7 Y[O A,

Sym as aclosed substack of

Before stating the main result of this section, we introduce some notations. Recall that YS<)‘ T

of YS’\ 7(Z) for 7 € Adm" (). We define

Sym

is the union

<)\TV (A')CYgATV XAT(A/)CXAT XS)\T (A«)C <>\T

Sym Sym ’ Sym Sym? Sym,reg Sym,reg
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to be the open substacks obtained by taking intersection with Ysj,;\nT(“) inside st,if We also define T}, .

torsors

U <A\ Vi) = Yau V= (2), Xam(2) = Xn(®), X reg(3) = Xom 10p ()

by taking pullback along the 7, I torsor U (%, < ) — Ys<yf;17(2).
We define M 7 ;e (< A, Va) to be the union of M 7 (), V,) for all regular dominant cocharacters A’ < A.
Note that M7 ;g (< A, Va) is a closed subvariety of M3 (< A, V,) which is in turn contained in M7 (< \).

We define open subschemes
U™(Z,< A\, Va) C MY (< A, Va) and Useg(3, < A, Va) € M 1eg(< A, Va)
by taking intersection with the open subscheme U (Z, < \) C M7 (< ). We also define T(\g/’j-torsors
U™(Z,< A\, Va) = U™(Z,< A\, Va) and Upeg(Z, < A, Va) = Useg (3, < A, Va)

by taking pullback along the trivial T(\D/’J-torsor U (Z, <N 2 U(E, <N,
To the lowest alcove presentation (s, 11) of 7, we associate tuples of integers a, = (a, j/)jeq € (03)7 l
given by a, j; = (sgryj,)’l(a’)(j/)/(l — p!"). We remark that if j € 7 and j = j' mod f, then a, j; =

s; (1 + ;) mod @ (see [Le+a, Lemma 7.3.1]).

Theorem 4.4.3. 1. We have the following commutative diagram of p-adic formal algebraic stacks

Xsfyinfreg(“)c—>Uz<A A c—>Uz<>\AP<—)U“Vz<)\V AP<—)Uregz<)\VaT)

ngvTvvoo(N)(

Sym Sym

where the two parallelograms are cartesian, hooked arrows are closed immersions, and diagonal ar-
rows are Ty -torsors. Moreover, there exists an integer Nung = N({\; }je ) only depending on
{A }j cr C Z3 such that if 1 is Nging-deep in C, then the dotted arrows exist and are closed immer-
sions for all Z € Adm" (\).

2. There exists a nonzero polynomial P = P{AJ. Yieo (X1, X2, X3) € Z[X,, X, X3] depending only on
{} }j cr C Z> and the ramification index e of O such that if ju is P-generic, then the longer dotted

arrow is an isomorphism. In particular, we obtain the following local model diagram

<A T 7 ~ ]

XSym reg(~) = Ureg(za < )‘v va,)/\p
XS)\J' > N
Sym,reg(g) Ureg(27_ 7vaT) p

Furthermore, for any tame p € Xsym (F) and regular dominant X' < ), the versal rings to XSym atp

are domains (if is nonzero).

YENT(2) UZ, <A ¢ U™ (Z,< A\, Va

ok



CHAPTER 4. MODULI STACKS IN P-ADIC HODGE THEORY 67

For the proof of Theorem 4.4.3, we need the following Lemma. Its proof is given in §5.4.

Lemma 4.4.4. Suppose that 7 is (h + 16)-generic. Then Xé‘yfn(a # () ifand only if 7 € Adm" (\).

Proof of Theorem 4.4.3. Since the proof is completely analogous to that of [Le+a, Theorem 7.3.2], we briefly
sketch the proof.

1. Let U(Z, < A\)"» = Spf R. By Proposition 7.1.6 in loc. cit., the composite Spf R — Ys,ﬁf S YN
provides anideal Iy, < RsuchthatU(Z,< A,V ) = Spf R/Iv__ . By Proposition 7.1.10 of loc. cit.,
there is an inclusion (7(5, <\ Vi) XoSpecO/p C [7“"(5, < A, Va, ) of subschemes in ﬁ(Z, < A).
As an application of Proposition 3.3.9 in loc. cit., we can lift the map

U(Z,< A\, Vrso) X0 Spec O/p — U™ (2, < A\, Va. ) = U™(Z,< A\, Va.)

to Spec R/Iy. — U™(Z,< A\, Va,) at the cost of a genericity assumption on y. (The Proposition
3.3.9 in loc. cit., which uses Elkik’s approximation theorem, easily generalizes to our setup; its proof
only uses the fact that open charts of universal local models are affine and smooth after inverting v
which follows from Proposition 3.2.7 in our case.) We can also lift the map

U(Z,< A\ Vioo) Xo SpecO/p = U™ (2, <\, Va,) = Ty

to Spec R/Iy_., — Tg’j because of smoothness of Tg’j. By combining with the previous map,
we obtain a map Spec R/Iy_. — U™ (%, < A, Va,) which induces the shorter dotted arrow because
R/Iyv_, is p-adically complete. It is moreover a closed immersion because it is closed immersion
modulo p. Since )Fsgyi‘r’:reg(i) (resp. Tj}cg(E, < \,Va.)"?) is O-flat and equals to the union of top(=
1+474#J)-dimensional irreducible components of U (Z, < A, V; ) (resp. the O-flat locus of U™ (Z, <
A, Va,)), the longer dotted arrow is induced by the shorter dotted arrow.

2. Since both )?Sﬁyﬁfreg(a and CNfreg(E, < \,Va.)"r are reduced O-flat p-adic formal schemes equidi-

mensional of dimension 1 + 7#.7, the longer dotted arrow is an isomorphism if both )Fsgyi‘rfreg@) and

Ureg(Z, < A, Va,)"'» have the same number of irreducible component. We apply Theorem 3.4.1 for
all regular dominant \’ < . Then there exists a polynomial P € Z[X;, X5, X3] only depending
on {\;};cs and the ramification index e of O/Z, such that if P(a, ;) # 0mod p for all j € 7,
U(Z,N,Va,,)isunibranch at z and U (z, X', V,_ )" is irreducible for all regular dominant A’ < A. By
Corollary 4.2.17. this implies that the number of irreducible component of ﬁreg(E, < A\, Va, ) is at
most

#{N < X\ | X regular dominant, 7 € Adm" ()\")}.

On the other hand, Lemma 4.4.4 implies that the number of irreducible component of )?S%]?ﬁfmg(a is

at least
#{N < X\ | X regular dominant, 7 € Adm" (\')}.

Thus the longer dotted arrow is an isomorphism.

Suppose that p € Xgym(F). For regular dominant A’ < X, we let n, be the number of minimal

: . : Nor
primes in any versal ring to Xg.

Sym atp. Ifp e ngyi\ﬁT (F) is tame, it’s image in Yséy;\n’T(F) is a triple
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(M5, N5, o) where M is a semisimple Breuil-Kisin module of some shape z by [Le+a, Proposition
5.5.7]. Then M5 € Ysii‘nT(E)(F) lifts to an element in TV-7 (F)Z € U(Z,< A)(F). Thus, we can

take a versal ring to XSS}:I;T at p which is also a versal ring to (Zeg(z, < N, V,,) at Z. By the previous

paragraph, the number of minimum primes of this versal ring is exactly

Z nx = #{N < X | X regular dominant, Z € Adm" (\')}.
N<A

By induction on )\, we can show that n = 1 if and only if Z € Adm" ()\) and n) = 0 otherwise.

4.5 Potentially crystalline stacks modulo p

Let A € X,(TV)7 be aregular dominant cocharacter such that std(\) C ([0, h]*)7. Let 7 be a tame inertial
type with (h + 2)-generic lowest alcove presentation (s, 1) which is \-compatible with ¢ € X*(Z)7. Recall
that both Xgym req and XS/\y:nF are equidimensional algebraic stacks over F' of dimension 4 f. Thus XS/\y:nF
is topologically a union of irreducible components of Xsyr, red, Which are labelled by Serre weights.

Suppose that C, C XSS\/;TF We define algebraic stacks 50 and ;szgyi\nTF by the following cartesian diagram

Cp —s fsgyi‘nTF —— Mg (< M\

l | y(s,u) 45.1)

. AT <AT
CU XSym,F YSym,F'

If p1 is (2h — 2)-deep in C), then the closed immersion QFSS},’I\HTF < M 7(< N factors through M}V(S
A, Va, ) by [Le+a, Proposition 7.1.10]. Recall that by Theorem 3.6.2, 7 f-dimensional irreducible compo-
nents of M3 (< A,V )r are exactly CSw@(r)* forall o € JH(W (¢~ 1(\) — ) @ 5(7)).

The following Theorem describes the underlying reduced substack of XS%;\HTF

Theorem 4.5.2. Let A\, T be as above. We assume that 1 is (h + 16)-deep in C,. Then we have

<\, 7T _ AT —
(XSym,reg)red - (Xsym)red - U CU.
o €JH(W (=1 (N)—n)®7F(T))

We need the following Lemma, whose proof is given in §5.4.

Lemma 4.5.3. Suppose that i is (h + 16)-deep in C,,. Then for each o € JH(W (¢=1(\) — n) @ 5(7)), we
have C, C Xé‘yan C ngyi‘nTF

Proof of Theorem 4.5.2.. Since j1is (h+16)-deep in Cy, the Lemma 4.5.3 shows that X37  (resp. X7 1)
has at least #JH(W (¢~ 1(\) — 1) ® &(7)) many irreducible components of dimension 4f (resp. 7f). On

the other hand, the number of 7 f-dimensional irreducible components of /\?Sgy;\nTF is at most that of M}V(S
A, Va, )r, which is #JH(W (¢~ 1(\) — n) ® (7)) by Theorem 3.6.2. This proves our claim. O

Theorem 4.5.4. Let (s, j1) be a (h + 3)-generic lowest alcove presentation of T which is (A — n)-compatible
with ¢ € X*(Z). If o is a Serre weight such that C, C X3, then o € JH(W (¢ (\) — 1) @ o(7)) and we

Sym’
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have a commutative diagram

Cs
. <) — —~ Tk (r) ~ [0,h]
Cy & Xs}n’l,F — M}V(S AMVa )F —— M7 (< Nr FIJ@*(T)
JTIX,J lTFv,J lTl‘Y’J lTl«Y’J
T T ~[07h] . .
Cy — XSSy/r\nF YS?/?H,F —s |:F1‘775*(T)/T1\;\/"7-COHJ:|

|

ét,Sym
B-Modse

where all rectangles are cartesian, all vertical arrows labelled by T, 1;/ 7 are T, 1;/ I _torsors, and all hooked
arrows are closed immersion. The bottom diagonal map is the composition of canonical morphisms C, —
Xsym red S, @-Mod%’SFym. Furthermore, if (s, p) is (h+ 16)-generic, then the above diagram holds for all
o € JHW (¢~ (XN) —n) @7(T)).

Proof. By Proposition 4.3.8 and (4.5.1), we get the diagram except the top diagonal arrow. The image of C, in
M;V(g A, Va, )r is a top dimensional irreducible component. By Theorem 3.6.2, it is equal to CN'E/{E* (r)~1!
for some o’ € JH(W (¢~1(A\) —n)®@7(7)). We claim that ' = o. Let (w, w) be a lowest alcove presentation
of o’ compatible with (. We write x = 7~ (w) - (w — 1) so that 0’ = F(x). Note that x is 3-deep in its
alcove by Proposition 2.5.6. Also, we write w = t,,,w. We can and do choose a triple (w1, W2, 5) such that
s =1, sand
Wy = W, Wy = Wy, 5wy (0) = w, szj_le__ll =1.

Then C’g, = SIYO (w1, Ws, §) which contains a dense open subscheme Ué, = Sp(wr, Wa,5)V0. Let ﬁg/ -
55, be the preimage of Ug,. By [Le+a, Lemma 7.4.6], the image of (75, in @—Mode}gsym consists of
(M, N, ) such that V. (M) has the form

X1 X * *

0
X2 ¥ 0¥ (4.5.5)
0 0 x3 =

0 0 0

(Kj+m;)s
where y; = Hjeij”Uj 7

are maximally nonsplit of niveau 1 and of weight o. Let p be an F-point in Uy, N ﬁff&?* (1)~

Ik, - On the other hand, 5(, has an open dense subscheme Z/Nl(, whose F-points
1

. Since p
is 3-generic, the G'i__-stable standard flag of ﬁ|GKOO given by (4.5.5) is also G k-stable ([Le+a, Lemma
7.2.10(4)]). Then the condition on Y; and p being maximally nonsplit of niveau 1 and of weight o imply that

o' = o. The last assertion follows from Theorem 4.5.2. O

Proposition 4.5.6. Ler p be a 22-generic tame L-parameter over F. Let W4(p) be a set of 3-deep Serre
weights o such that p € C,(F).

1. We have Wopy () C W,(p) € W (p).
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2. Let (Wy,w) be a lowest alcove presentation of o € W' (p) compatible with (. For each j € J, let
Pg, , be the polynomial in Theorem 3.7.1. If Pg, ;(w;) # 0 mod p for all j € J, then o € W, (p)

Proof. Forany o € W' (p| Iq, )» We can use Lemma 2.5.14 and [Le+a, Remark 2.1.8] to find a tame inertial
L-parameter 7 with a lowest alcove representation such that w(p|iq,,7) € Adm(n) and o € JH(a(7)).
Since p is 22-generic, such 7 is 19-generic. By applying Theorem 4.5.4 to such 7, A = 7, and o, we get
Wy (p) = Wg (p). Then the claim follows from Theorem 3.7.2. O



Chapter 5

Global setup

5.1 Some local Galois deformation rings

Let 50 be the category of completed Noetherian local (O-algebras with residue field F'.

Let F be either a number field or a local field. Let p : Gr — GSp,(F) be a continuous representation.
We let RpD be the framed deformation ring representing the functor DﬁD taking A € Co to the set of GSp,(4)-
valued lifts p of p. If ¢ : Gp — O is a character lifting sim(p), we write Rlﬁ:’ ¥ for the fixed similitude
deformation ring representing DﬁD ¥ taking A € Co to the set of GSp, (A)-valued lifts p with sim(p) =
P Rp A.

5.1.1 Local deformations: [ = p

Suppose that FF = K. Given a type (A + 71, 7), we denote by R%J”"’T the unique O-flat quotient of RFD
whose A-points, for any O-flat A € Cp, are lattices in potentially crystalline representations with Hodge—
Tate weight A + n and tame inertial type 7. We have its version with fixed similitude character R%JFW’T’w.
Note that Rgmw is non-zero only if v is potentially crystalline of type (sim(A 4 1), sim(7)). We record

the following Lemma relating a potentially crystalline deformation ring to its fixed similitude variants.

Lemma 5.1.2. Recall that p > 2. Twisting by the universal unramified twist
uryy. : Gg = O[X]

sending Frobg to 1 + x induces an isomorphism R%J”” ~ R%Jr"’”p [X].

Proof. This can be proven as [EG14, Lemma 4.3.1]. O

: A+n,T
We also write Rst a(z)

(std(A + 1), std(7)).
We prove that certain potentially crystalline deformation ring of tame 5 : Gx — GSp,(F) is nonzero

to denote the potentially crystalline (GL4-)deformation ring of std(p) and type

and a domain. We have the following necessary condition for R%“”T # 0 under a mild assumption on p and

T.
Proposition 5.1.3. Letp : Gx — GSp,(F) be a continuous representation and (A + 1, 7) be a type.

1. If 7 is not (hxyy + 1)-generic and p* is max{2hy,,, 22}-generic, then R%'H”T =0.

71
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2. If T has a lowest alcove presentation (s, j1) with p (hx4., + 1)-deep in Cy and R%H"T % 0, then p®
has a ¢~ (\)-compatible lowest alcove presentation such that w(p, ) € Adm(¢~1(N\) + 7).

Proof. By [Enn19, Lemma 5], if R%J””T # 0, then R%sf"” # 0. Thus, we may assume that p = p.

1. Note that R%H” = 0if R;‘:gg%; = (. Then the latter follows from a mild strengthening of [Enn19,
Proposition 7] (as explained in the proof of [Le+a, Corollary 8.5.2]).

2. If R%J””T = 0, then R;\tzz%; # 0. Then the claim follows from the corresponding result for GL4

([Le+a, Corollary 5.5.8]) and Lemma 2.1.6. O
There is a Coxeter length function [ on W, which can be extended to E ~ W, x Q by setting [(wd) =
l(w) forw € W, and 6 € Q. Itis expected that if R%J”"’T = 0, the complexity of R%J”” increases
as the length of w(p, 7) decreases. In the special case that w(p, 7) has the maximal length, i.e. wW(p,T) €

W(p~1(\) + 1), we can compute R%J”” explicitly under a genericity assumption.

Theorem 5.1.4. Let p : Gk — GSp,(F) be a tame representation. Let (A + 1, T) be a type and (s, iv) be a
(2h x4y + 1)-generic lowest alcove presentation of T. If there is a lowest alcove presentation (sz, ji5) 0f P| 1,
such that w(p,7) € W.(\+n), then R%J”” is formally smooth over O with 4f + 11 variables. Moreover,
any p : Gxg — GSp,(O) of type (A + n, ) lifting p is potentially diagonalizable.

An analogue of Theorem 5.1.4 for the group GL,, and A = 0 is proven in [LLL19, Theorem 3.4.1]. We
first prove the following generalization of loc. cit. for any dominant A. Then Theorem 5.1.4 follows almost

immediately.

Theorem 5.1.5. Let p : G — GL,,(F) be a semisimple representation. Let (A + 1, T) be a type (for GL,,)
and (s,p) € W, x X*(T,)) be a (2hx4y, + 1)-generic lowest alcove presentation of T. If there is a lowest
alcove presentation (sp, ji5) of p|1,c such that w(p,7) € Wy (A + 1), then R%'H'/’T is formally smooth over
O with w + n? variables. Moreover, any p : G — GL,(O) of type (A + 0, 7) lifting p is potentially
diagonalizable.

Proof. We first claim that p € X=*7"7(F). By [Le-+a, Proposition 5.5.7], there exists I € Y= 17 (F),
semisimple of shape w(p, 7)* = w(A + 7') for some w € W, such that p|g,__ ~ Tij,(9M). Then the claim
follows from Proposition 7.2.3 in loc. cit..

Let 3 be a gauge basis for 9)1. Then we have

Agls = Dj(w+p) )
for some D; € T, (F). We let R%)‘ #1758 be the deformation ring that generalizes Tﬁﬁ ¥ in [LLL19],
which parametrizes lifts of (90, 3) of height bounded by 7’ and satisfying the monodromy condition over the
generic fiber, by replacing 1’ with A 4+ 1. Then R%’\Jr"/’”a is a versal ring to Y,S 77V at 9. As in

Proposition 3.4.8 in loc. cit., the universal partial Frobenius matrices has the form

A(j),univ,v — D;_miv(v +p)wj(,\+n')U(j),univ,V

for j € J where D™ € T,,(R=277) lifting D; and wj ' U0V ay; € T, (REM"""7). In addition,

for any root o < 0,

(wj—1U(j),univ,ij) _ Uéwj(a)<0f((lj)(v)

e
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where f(gj ) e R%‘ 'H’l’T’B[v} is a polynomial of degree < —(\+17', ") and is zero modulo the maximal ideal

of R%)‘H’l’rﬁ. Moreover, as in the proof of Proposition 3.4.12 in loc. cit. (this is where we need (2h x4, +1)-
genericity of (s, u)), fo(éj ) mod w is determined by its top degree coefficient. In particular, this implies that
REMTB n(n+1)f
o 2
It follows from the diagram (3.16) in [LLL19] that there is an isomorphism

is a quotient of a power series ring over O in variables.

RSN Loy wng] = RGP Ty, e

% +n? + 1 where the latter is quotient of a power series ring over O in

The former is of dimension ™
W + n2.This shows that Rﬁg’\ﬂ/ is formally smooth over O of relative dimension W +n2 We
have R%’\Jr"/ o~ R%J’"/ as the universal partial Frobenius matrices A()-"":V has elementary divisor exactly
(v+p™H.

Finally, we prove that any p : Gx — GL,(O) of type (A + 7', 7) lifting 7 is potentially diagonalizable.
Letp' : Gk — GL,(O) be alift of p of type (A+7', 7) whose associated Breuil-Kisin module is contained in

<A+7',7,8
Rﬁ

the locus of Spec given by the condition U(U"):univ.V — 1 Let K’/K be an unramified extension

of degree n!. Then p’|g,., is a sum of characters. Since R%*'” is a domain, this shows that p is potentially

diagonalizable. O

Proof of Theorem 5.1.4. We can repeat the proof of Theorem 5.1.5 using Proposition 4.4.2 instead of the
diagram (3.16) in [LLL19]. The symplecticity of 5 implies the symplecticity of (9, 8) (i.e. D; € TV (F)
instead of T, (F)). The appropriate symplectic deformation ring R%\'H”T’E of (I, B) can be obtained from
the GL, case by imposing that AU)""V:V ig valued in GSp,, i.e. D}miv valued in TV and w;lU(j)’u“iV’ij
valued in U. Then R%’\'H"T’E is a quotient of power series ring over O with 7 f variables. On the other hand,
R%J””T has dimension 4 + 11. Then we have an isomorphism

R%JH],T [[xlv e ,J)3f:|] ~ %)\+7]’T7ﬂ [[yl» e ayll]]

which proves the claim. The potential diagonalizability can be proven similarly using Example 4.1.12. [
We also record a lifting result for certain non-tame p.

Lemma 5.1.6. Let € X (T) be O-deep. Let p : G — GSp,(F) be of maximally nonsplit of niveau 1 and
weight o0 = F(k). Let a be an integer and let k be the unique integer such that a — 2k =: b € {3,4}. Let
(Ao + m,74) be a type such that

A — k(1,1;2) ifb=3
“ (1,0;0) 4+ k(1,1;2) ifb=4

and 7, = 7(1,k — ¢~ 1(\,)). Then there is a potentially crystalline lift p : G — GSp,(O) of p with Hodge
type Ao + 1 and tame inertial type T, and of the form
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4 _ Aam d(kj)—Aa,j
where ©;_;Xi = €,° Hjej Wi o .

Proof. 1t is clear that x; lifts ;. Since & is O-deep, for ¢ < j, yiyj‘l # €p. Thus, Xin_l # €p. Then
the existence of the lift p follows from the vanishing of cohomology H?(G'x, x: Xj_l) = 0. It is potentially
crystalline by [EG23, Lemma 6.3.1]. O

5.1.7 Local deformations: [ # p

We record deformation problems for Thara avoidance argument. Let [ be a prime and [ # p. Let F'/Q; be
a finite extension with the ring of integers O, a uniformizer wp, and the residue field kr of size gp. We
assume that g = 1 mod p. Let p : Gp — GSp,(F) be a trivial representation and ¢ : Gp — O* be a
continuous character trivial modulo .

Let ¢ = ((1,¢2) be a pair of continuous characters ¢; : O — O that are trivial modulo . We let D%
be the functor taking A € Cp to the set of A-valued lifts p : Gp — GSp,4(A) such that for any o € I, the
characteristic polynomial of p(o) is

(X — Gu(Artz' (0)))(X = G2(Artp' (0)))(X = G(Arty' () HX — Gu(Artp' (0))) "

Then D% is a local deformation problem. We let R% € CA@ be an object representing D%. We record the

following results on R%.

Proposition 5.1.8 (Proposition 7.4.7 and 7.4.8 in [Box+21]). 1. Suppose that ( = 1 is the pair of trivial
characters. Then Spec R% is equidimensional of dimension 11 and every generic point has character-
istic zero. Moreover, every generic point of Spec R%/w is the specialization of a unique generic point

of Spec Ry,

2. Suppose that (1,(o # 1 and (1 # CQﬂ. Then Spec R% is irreducible of dimension 11, and its generic

point has characteristic zero.

5.2 Congruent patching functors

Recall the finite étale Z,-algebra O,. It can be written as a finite product of finite étale local Z,-algebras
[l,es, Ou- We write F, = Oy[1/p] = [],c5, Fo- Let J = Homg, (Oy, 0).
Letp: Gq, — LG(F) be a tame L-parameter. We consider 1, : Gq, — L%(O) lifting sim (). Note

that 1, is equivalent to a collection {¢,, : Gr, — O*} . For the applications in §6, we only consider 1,

vES)
satisfying:

* 1), is potentially crystalline with tame descent data
» there exists an integer w such that HT, (¢,) = {w} forallv € S}, and o € Homgq, (¥, E); and
* ty€, " has finite image for all v € S),.

Note that the first and second conditions imply

wp&;w‘IQp = [Eiwhqp]v

and the third condition implies 1€, = [p€,*].
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Definition 5.2.1. 1. We define ¥(p) to be a set of ¢, : Gq, — L% (O) lifting sim(p) and satisfying
the above conditions. If ¢, € ¥(p), we say 1, and 5 are compatible.

2. We say a type (A + n, 7) is compatible with 1, if sim(\; +n;) = w for j € J and
sim(7)€y) |1q, = ¥pliq, -

Remark 5.2.2. It follows from the above discussion that given a tame L-parameter p and a type (A + 7, 7),

there exists at most one ¢, € ®(p) that is compatible with (A + 7, 7).

Let ¢, € U(p). We define
RY" = @yes, oR5 ", RY = R"@oR"

where RP is a complete Noetherian equidimensional flat O-algebra. For a type (A + 1, 7) compatible with

p, we define

/\+n77—7'¢'p > Ao+, To Py 1,7y . 1) )\+7])7—7wp
- = ®ves,, 05" , R Pi= R Qpuy R .

Let Mod(RZfop) be the category of finitely generated modules over RY and Repg” (GSp,4(Op)) be the
category of topological O[GSp, (O, )]-modules, which are finitely generated over O, with fixed central char-

acter given by ®yes, (Yveplry, ) © (Artr, [op, ).
Definition 5.2.3. A fixed similitude patching functor for p is a triple (¢, Rféﬂ M;?) where v, € ¥(p), RY
is as above, and

MY» : Repe? (GSp4(O,)) — Mod(R¥»)

is an exact covariant functor satisfying the following conditions:

(1) foratype (A+n, T) compatible with ¢, and a GSp,(Op)-stable O-lattice 6° (A, 7) in o (A, 7), MLy (o°(A, 7))

. . A+n,T, ipl s
is a maximal Cohen—Macaulay module over R mT Y if it is nonzero; and

() forall ¢ € JH(G(A, 7)), M4 (o) is a maximal Cohen—Macaulay module over Ra; "% /o if it is

nonzero.
Furthermore, we say that

(i) MY is minimal if RP is formally smooth over O and ML (0°(X,7))[p1] is locally free of rank at

A+n,T, —
most one over Rt T Yr [p~1]; and

(ii) MYr is potentially diagonalizable if MY* (o°(X, 7)) is nonzero for all (A + 1, 7) such that 5, has
potentially diagonalizable lift of type (A, + 1., 7,,) for each v € \S),.

For the following definition, we let R., be a complete local Noetherian (-algebra with a surjection
Ry — R&’ for all ¢, € ®(p). In the application, R, will be a completed tensor product of local deforma-

tion rings and ng will be a quotient of R, with fixed similitude character.
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Definition 5.2.4. 1. We say a set
Moo = {(¥0p, REr, M2r) | (¢, RSy, MY») is a fixed similitude patching functor for 5}
is (or its elements are) congruent if the restrictions of M, ﬁgp to w-torsion objects
MYr /@ : Repg” (GSp,(0,)) — Mod(RY? /o) < Mod(Ruo /@)

for all (v, ng, Mfop) € M, are equal.

2. We say that M, is minimal (resp. potentially diagonalizable) if all (v, Rfop, Mowc”) € M, are

minimal (resp. potentially diagonalizable).

3. A congruent family of fixed similitude patching functors for p is a congruent set of fixed similitude
patching functors M2, such that the map

MZ, — @(p)
(thp, RE2, ML) 5ty

is a bijection. In other words, M2, consists of exactly one fixed similitude patching functor for each
&, € B(p).

5.3 Algebraic automorphic forms

In this section, we recall the global setup in [EL, §4]. Let F' be a totally real field. Suppose that [F' : Q] is
even. We also assume that p is unramified in F'. Let G be the F-group GUy(D) where D is a quaternion
algebra over F ramified at all infinite places and split at all finite places. Such a D exists because [F : Q]
is even. Then G is an inner form of GSp,. The center Zg is isomorphic to G,,, and G is compact modulo
center at infinity. Choose a maximal order Op of D. It defines an O p-structure on G. For each finite place
v, we fix an isomorphism Op ,, ~ M>(Op,) which induces an isomorphism ¢,, : Gop, — GSp4/OF,U'

Let x : Arp/F* — C* be a Hecke character. We write x,, = ¢~ ' ox. Let U = U,U>P <
G(0,) x G(AZ") be a compact open subgroup. For a finite place v of F', we write Iw(v) (resp. Iwq (v)) for
the (resp. pro-p) Iwahori subgroup of G(F,) ~ GSp,(F,). Let W be an O-module with a continuous action
of U,. We define S, (U, W) to be the O-module of functions f : G(F*)\G(AF) — W such that

flzgu) = Xxp, (2)u, ' flg) Vg € GAF),ue U,z € Zg(AF).

Let U < G(A%) be a compact open subgroup. We assume that U is sufficiently small in the sense
that it contains no element of order p. For our local applications, we will fix a finite place vy such that
dv, Z 1 mod p and has residue characteristic > 5 and assume that U,,, = Iw(vp). In this case, the choice of
U,, ensures that U is sufficiently small. Let Py be the finite set of finite places of F' at which U is ramified.
Let S, be the set of places of F dividing p. For a finite set P, we define the universal Hecke algebra T
to be the polynomial ring over O generated by S, T, 1,152 for each v ¢ Pandv = vy if vg € P. When P
contains S, U Py, there is a natural THuniv_action on Sy (U, W) where S,,, Ty, 1, T, 2 act through the double
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coset operators

Wy

Wy 1 1

respectively. We denote the image of T*"™ in Ende (S, (U, W)) by T (U, W).

Let ¢ 1= xp,.€, 3. Let7 : Gr — GSp,(F) be an absolutely irreducible continuous representation and
sim(7) = ¢ mod . When we have a fixed place vo, we assume that 7|, is a sum of unramified characters
with no two eigenvalues of Frob,,, have ratio ¢,,. In applications, we can always choose such vy ([Box+21,
§7.7]). We write

F|GF’UO & UT¢; Ul'e, UTgy €D Ul'e, UTe, €D Ule, Ul'e, D UTe,

for ¢1, o, cp € F*. We denote by P- the set of finite places either dividing p or at which 7 is ramified. For
any finite set P O Pr, we define a maximal ideal mﬁ S TPV with residue field F by demanding that

1. foreachv ¢ P,
S, mod mZ, = 1(Frob,)
and the characteristic polynomial of 7(Frob,,) in F[X] is given by

X4 - 'u,lX3 + (quv,Z + (qg + qU)S'u)X2 - quv,ISvX + qSS?; mOd m?,)@

2. forv = vg (if vg € P),

P P P 3
S, mod my = co, Ty mod my, = gyoc1, T2 mod My = Gy, C2

(cf. [Box+21, §2.4.7]; note m£ + 1s well-defined by symplecticity of 7).

Definition 5.3.1. 1. We say that a pair (7, x) as above is automorphic of weight u € (X*(T)*)%» and
level U if there is a finite set of finite places P containing Py U Pr such that S, (U, V (p)Y)mr  # 0.

X

2. Let o be a Serre weight of Go(F,). We say that 7 is modular of weight o (and level U), or equivalently,
o is a modular weight of 7 (at level U) if S, (U,0"),r # 0 for some y. Note that S, (U, 0"),r

does not depend on the choice of x as long as x;,.€, 3 mod w = sim(7).
3. We let W (T) be the set of modular Serre weights of 7.

We remark that (7, x) is automorphic for some x if and only if 7 is a mod p reduction of the Galois
representation attached to a regular algebraic cuspidal automorphic representation of G(A ) (equivalently, of
GSp,(AFr)); see [EL, Remark 4.2.4].

Let (7, x) be automorphic of weight p and level U and P be as above. Suppose that there is a subset
R C P disjoint from S, such that for v € R, U, = Iw;(v), ¢ = 1 mod p, and 7|g,,, is trivial. For each

v € R, we choose a pair of characters ¢, = ((y,1, Cv,2) such that
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1. fori =1,2,(,; : O — O is a continuous character trivial modulo w;

2. either y1 = (y2 = 1,01 (p,1,(p2 # 1 and (1 # Qf;

sim

Let Tyer := ker(I' — G,;,). The projection to the first two diagonal entries induces an isomorphism
Ter = G%l. We write (g for the induced character

(R = H[Zv] : H Tder(kv) - OX.

vER vER

We let TF (U, V(1)) ¢, to be the image of TF"™ in Endo (S (U, V ())¢,) where the subscript ¢z denotes
taking the (g-coinvariant for the action of IL,c gTqer (kv )-

Proposition 5.3.2. Keep the above notations and assumptions. We further assume that7 : G — GSp,(F)
is absolutely irreducible. Then there exists a unique continuous representation

reuU) : G = GSpy(TY (U V ()¢ mr )

such that

1. P (U) lifts 7;

XH 1
2 sim(rPURU(Q))) = ¥

3. ifv¢ PUQ, thenr? ,(U) is unramified at v and the characteristic polynomial of ¥, (U)(Frob,) in

TE(U,V (1)) X)] is equal to

r |
Cromy o

X' =Ty 1 XP 4 (T2 + (6 + )Xo (@) X? — 3T 1X0(0) X + q0x0(w0),

4. if v € R, then the TL(U,V (1))¢,, mp_-point of RFD‘G induced by ¥ (U)|ay, factors through
m " , v
RSy

T\GFU

v

5. ifvg € P and v = vy, then

P .
TepO)lGr, = e, jurr, Jurs, & urr, urs, & urr, ,urs, & urs,;

6. and for every O-algebra homomorphism f : Ti(U, V(1) ¢pme — E' where E' is a finite extension
omE

of E, the representation f o TQM(U) |G, is de Rham of Hodge—Tate weights ., + 1, for all v € S,,.

Proof. This is proven in [EL, Proposition 4.2.6] except item (4) and (5). By the local-global compatibility
in [Mok14, Theorem 3.5], item (4) follows from Proposition 2.4.28 [Box+21] and item (5) follows from
Proposition 2.4.3, 2.4.4, and 7.4.2 in loc. cit.. O

5.4 Patching argument

In this section, we construct a congruent family of similitude patching functors in the global case (i.e. O, =
OF ®z Z,) and in the local case (i.e. O, = O).
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Definition 5.4.1. 1. We say that a continuous representation 7 : G — GSp,(F) is odd if for each

infinite place v and corresponding choice of complex conjugation ¢, € G g, sim(7)(c,) = —1.

2. We say that a continuous representation 7 : Gg — GSp,(F) satisfies Taylor-Wiles conditions if T is
absolutely irreducible, odd, and vast and tidy (in the sense of [Box+21, §7.5]).

Theorem 5.4.2. 1. LetT : Gp — GSp,(F) be a continuous representation. Let x be a Hecke character
and ¢ 1= xe, 3. Suppose that T satisfies Taylor-Wiles conditions and (F, ) is automorphic (of some
weight 1’ and level U’). Then there exists a congruent family of fixed similitude patching functors for

Tp.

2. Letp : Gxg — GSp,(F) be a 16-generic continuous representation. If p is either tame or maximally
nonsplit of niveau 1 and weight o, there exists a congruent family of potentially diagonaliazable fixed

similitude patching functors for p. In the former case, it can be taken to be minimal.

Remark 5.4.3. 1. Let o be a Serre weight of GSp,(Op/p). Let M2 be a fixed similitude patching
functor in Theorem 5.4.2(1). It will be clear from the construction of M;%" that
(M3 (0)/moo)” = Sy(U, 0" )r .
In other words, o € W () if and only if MZr (o) # 0. Similarly, for a type (A, 7) compatible with t,,,
we have

(M (0°(A7))/850)" = S(U,0° (A7) ez -

In particular, if M2y (6°(A, 7)) # 0, then 7, has a potentially crystalline lift of type (A + 1, 7).

2. Let o be a Serre weight of GSp,(k) and MZ? be a fixed similitude patching functor in Theorem
5.4.2(2). It will be clear from the construction and Theorem 5.4.4 that if Mgé”(o"(/\, 7)) # 0, then
o € W'(plr.). Also, for a type (A, 7) compatible with 1, if M;’bo"(ao(A,T)) # 0, then p has a
potentially crystalline lift of type (A + 7, 7) by Proposition 5.3.2.

Granting item (1) in Theorem 5.4.2, we prove the following weight elimination result. It will be used to
prove item (2) in Theorem 5.4.2.

Theorem 5.4.4. Let 7 : Gg — GSp,(F), x, and ¢ be as in Theorem 5.4.2(1). Let o € W (T). We suppose
that either (V| )* is 22-generic for each v
o e W (TP

p or o is T-deep and (T|q ., )** is 16-generic for each v|p. Then

Proof. By Theorem 5.4.2(1), there exists a congruent family of fixed similitude patching functors {M;@‘”}
for 7,. Let 0 = F()) be a modular Serre weight for 7. By the exactness of patching functors and Remark
5.4.3, 7, has a potentially crystalline lift of type (n),7) for any l-generic tame inertial type 7 such that
o€ JH(a(7)).

Suppose that A is 12-deep. For each s € W, let 7, = 7(s,wW, - A + 1) be a 9-generic tame inertial
L-parameter. Since F'(\) € JH(a(75)), for the unique ¢, € ®(7,) compatible with (1, 7, ), we have

M (0°(15)) # 0.
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1,Ts,%p
)

Since MY (0°(7s)) is supported on Spec R . 7|, admits a potentially crystalline lift with Hodge
type 7, and tame inertial type (75), for v|p. By Proposition 5.1.3, there exists a lowest alcove presentation
of 7’ (which does not depend on s by Remark 2.5.13) such that w(7°, 75) € Adm(n). By Lemma 2.5.12,
F(\) e W?(F;S).

Suppose that A is not 12-deep but 7-deep. Then the tame type 7. = 7(e, Wy, - A + 1) is 4-generic but not
12-generic by [LLL19, Proposition 2.2.16] and its proof. Also, F(A\) € JH(¢(7.)). Then std(7,) does not
admit a potentially crystalline lift of type T (7, 7.) by Proposition 3.3.2 in loc. cit.. This contradicts the first
paragraph of this proof.

Finally, suppose that \ is not 7-deep and (7|, )* is 22-generic for each v[p. For v

p, std(7|qy, ) does not
have a potentially crystalline lift of type (7, std(7(e, A))) by [Ennl9, Theorem 8] as explained in the proof
of [LLL19, Corollary 4.2.4]. Thus, 7|¢,. does not have a potentially crystalline lift of type (1, 7(e, A)). This

contradicts the assumption on F'(A). O

Granting item (2) in Theorem 5.4.2, we prove Lemma 4.4.4 and 4.5.3 (thus finishing the proofs of Theo-
rem 4.4.3 and 4.5.4). We first prove the following partial converse of Proposition 5.1.3.

Proposition 5.4.5. Suppose that a tame p : G — GSp,(F) is 16-generic. Let (A + 1, T) be a type with a
(ha + 1)-generic lowest alcove presentation of T. If p has a A\-compatible lowest alcove presentation such
that w(p,7)* € Adm" (\ + n), then R%J””T #0.

Proof. By Theorem 5.4.2(2), there exists a congruent family of potentially diagonalizable minimal fixed
similitude patching functors { M. ;/Jo”} for p. Choose a 16-generic lowest alcove presentation of p A-compatible
with 7. For each s € W, there exists a tame inertial type 75 with 13-generic lowest alcove presentation

compatible with p and w(p, 75) = s~ 1(n). By Lemma 2.5.11, we have

JH( (7)) "W (Bl1) = {F5(s)}-

Note that any element in JH(7 (7)) is 10-deep by Proposition 2.5.6.

On the other hand, p admits a potentially diagonalizable lift of type (7, 75) by Theorem 5.1.4. Then for
1, € ®(p) compatible with (n, 75), MLr (0°(7s)) # 0. By Theorem 5.4.4, JH(a (7)) N W () is nonempty
and contained in W7 (p|,. ). Therefore, Mébo”(Fﬁ(s)) # 0 and {F5(s)}sew = Wobv(p). For (A +n,7) as
in the statement, JH(G(X, 7)) N Wopy (p) # 0 by [Le+a, Proposition 2.6.6]. Thus My (@°(A\, 7)) # 0 and

An,T
AT 40, O

Proof of Lemma 4.4.4. Suppose that Z € Adm" ()). There exists a tame p € Xsym,(F) with a 16-generic

lowest alcove presentation such that w(p, 7)* = Z. By Proposition 5.4.5, 5 € Xé‘y;(F) Furthermore, 7 is in

X7 (Z) because ., (p) is equal to the image of Z in ®-Mod 2™ under iL. Conversely, if X, T (3) £ 0,

Sym Sym

then Y57 (2) # ). This implies 2 € Adm" (\) by Corollary 4.2.17. O

Sym

Proof of Lemma 4.5.3. Let (w,w) be a lowest alcove presentation of o A\-compatible with 7. We also set
k =7 Y(w) - (w—mn) so that ¢ = F(k). Then o is 16-deep, which implies w is 13-deep. Let p : Gx —
GSp,(F) be maximally nonsplit of niveau 1 and weight 0. Let w = t,, w. Note that , is dominant
and 3-small. Then a direct computation shows that 5°|;,. admits a 10-generic lowest alcove presentation
(7~ (w) " tw, w+7m" 1 (w) "1 (ny)). Similarly, a tame inertial L-parameter 7 (e, x) admits a 10-generic lowest
alcove presentation (7~ (w) " lw,w + 771 (w) (9, — n)). By Lemma 5.1.6, 5 admits a potentially diago-
nalizable lift of type (1, 7(e, k)). Since w(p*, 7(e, k)) = t,,, we have W (5**) N JH(F (7 (e, x))) = {o} by
Proposition 2.5.11. Note that any element in JH(7 (7 (e, ))) is 7-deep by Proposition 2.5.6.
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By Theorem 5.4.2(2), ML (@(r(e, k)) # 0 for the unique ¢, € ®(p) compatible with (1, 7(e, )), and
by Theorem 5.4 .4, My (@(r(e,k)))/w = MY (o). Then for any type (A+n, 7) such that o € JH(T (A, 7))

and the unique v, € ®(p) compatible with (A+n, 7), MY (@(A\, 7)) # 0. Since it is supported on RéoM’T’wp,
pE Xs’\y;F(F) Since such p are dense in C,, this implies that C, C Xé\y;F O

5.4.6 Construction of fixed similitude patching functors

We first provide a general construction of a fixed similitude patching functor by extending the construction
in [EL, §4.4], which is based on [Car+16] and [Box+21]. Then we explain how the construction applies to
particular cases.

Let F' and 7 be as in Theorem 5.4.2(1). Given v, € ¥(7,,), there exists a continuous character ¢ : G —
O lifting sim(7) and 9|, = 1, forallv € S, ([EL, Lemma 4.4.3]). Let x be a Hecke character such that
Xp,o = weg. We assume that (7, x) is automorphic of weight ;1 and sufficiently small level U.

Let S, be the set of places of F' dividing p and S be a finite set of finite places containing S,,. We define

q=h'(Fs/F,ad(r)(1)), g=2q—4[F:Qy+|S|~1.

For T' C S, we define Tr := O[y1,...,9117|-1]. We also define S, := 'TS[[Z%‘?]]. Viewing S, as an
augmented O-algebra, we let a., denote the augmentation ideal of S.

Suppose that S contains Sz U Syy. Let R be a subset of S disjoint from .S;,. We assume that for each
v € R, Uy, = Iwi(v), ¢ = 1 mod p, and 7|, is trivial. The presence of R is necessary for the “Thara
avoidance” argument and is not necessary for applications to the Breuil-Mézard conjecture or the weight part
of Serre’s conjecture. For each v € R, we choose a pair of characters ¢, = ((y,1,Cv,2) as in §5.3 which
Ther(ky) = O
Foreachv € S, let D, C DUDMG

we take D,, = DS. We consider a global deformation problem

induce a character g : [[,cp

v be a local deformation problem represented by R, € 5@. IfveR,

S = (S, {D11}1)€S7 ?/’)

If T is a subset of S, we write Dg for the functor of T-framed deformations of type S. Since T is absolutely
irreducible, Dgs (resp. Dg) is represented by Rg (resp. Rg) in CAO. The choice of a universal lift rg : Ggp —
GSp,(Rs) gives an isomorphism Rs @0 Tr ~ R%. Let REQ‘OC := @yerRy. Then there exists a natural
map Rg’loc — REL.

Given a Taylor—-Wiles datum (Q, (@1, - -, @,4)veq) ([EL, Definition 4.4.6]), we define the augmented
deformation problem

Udler
SQ = (S U@, {Dv}veé‘ U {Dv ery }veQ7¢)~

Foreachv € Q,let A, = k¥ (p)? where kX (p) is the maximal p-power quotient of k. Set Ag = [, 0 Av.
Let ag denote the augmentation ideal of O[Ag]. Then there is a canonical local ring homomorphism
O[Aq] — RZ, such that RS, /ag ~ RS. Since 7 is odd and vast, [Box+21, Corollary 7.6.3] shows
that for each n > 1, there exists a Taylor—Wiles datum @,, disjoint from S such that

° ‘Qn‘ =4q;

* ¢, = 1 mod p" foreach v € @Q,,;
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* there exists a local O-algebra surjection
, 5,1 5
e Rg an, .. xg] - R3,,

with g := 2q — 4[F : Q] + |S] — 1.

We define open compact subgroups U? (Q,,) of G(AZ") by setting UT(Q,,), = UP if v ¢ QU S and
UP(Qn)y = Iwy(v) if v € Q. We define a G(O,,)-patching datum in the sense of [EL, Definition 4.3.5]

(Socs RE2 (RY? b2 AMY? (H)nbr>1,1<.. 0. 6(0,)> 57 Jnz1, MY (H)o }r>1, 1<, 0.6(0,))

by setting
« R = RI™°[Xy,..., X,];

« R} = RS, with S-algebra structure induced by Soe — O[Aq, ] ®o Ts — RS, ;

n

« M7(H)y = [Sy(H - UP,O0/w") s ]V where the subscript (r denotes that we take the (g-

coinvariants for the action of [], . Taer(k(v)); and

e forn > 1,

Mo (H)y = [Sy(H - U7 (Qn), O/=") Y ®ns, R

suQ ]
moS Mo, SR

apr s MY (H)p /00 = M7 (H)g
where mq,, is the kernel of ®yeq, O[T (F,)/T(Oy)1] — F sending
T(Ov)/T(Ov)l =1, 50(721;) = X’u(wv)7 /81 (wv) — Q. 1, and BQ(WU) = Oy, 1002,

and the isomorphism aﬁp follows from [Box+21, §2.4.29].

Fix a nonprincipal ultrafilter 7 C 2N. By [EL, Lemma 4.3.9],

MY =il ((MP? (H), @5 Soc/m5_}az1)
r,H

is a finitely generated projective S [GSp4(O,)]-module with compatible S, [GSp,(F})]-action and the
action of S, factors through the map S,, — RY? induced by Soo — RYP. We also let M denote the
covariant functor

Repyy (GSp4(0y)) — Mod(R¥r)
V= Homo[GSm(op)} (]\4;1)01’7 V\/)\/.

Proposition 5.4.7. The triple (1, Rffé’, ;bop) is a fixed similitude patching functor for 7.

Proof. Since M is projective over O[GSp,(Op)]. MY is an exact functor. Let (A+n,7) be atype (A +
7, T) compatible with 1, and ¢ € JH(G (), 7)). It follows from [BG19, Theorem A] and [Box+21, Proposi-
tion 7.4.7,7.4.8] that dim S., = dim RS ""*?. Then the maximal Cohen-Macaulayness of M7 (o°(\, 7))
over Réj"’T’% follows from the usual commutative algebra argument (e.g. [Car+16, Lemma 4.18]). The

maximal Cohen—Macaulayness of M or (o) over R /oo follows similarly. O
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Proof of Theorem 5.4.2. We first prove item (1). Let ¢, € ¥(7,). We can assume that the level U’ is
sufficiently small by shrinking it if necessary. We apply the above construction for given 7, ¢,,, S = Sz U Sy,
R=0,and D, = DUD Vo, for each v € S. We can and do choose Taylor—-Wiles datum @,, for each n > 1
and the nonprincipal ultrafilter 7 independent of 1),,. Then all objects in the G(O,,)-patching datum reduced
modulo = in the construction in §5.4.6 are independent of v,,. Thus the set {Mg;” Yo, ea(7,) 1S a congruent
family of fixed similitude patching functors for 7, by [EL, Lemma 4.3.4].

Suppose that we are in the setup of item (2). When p is tame, we call it the tame case, and when p is
maximally nonsplit of niveau 1 and weight o, we call it the maximally nonsplit case. In both cases, we apply
[EL, Lemma 4.4.4] and the existence of potentially diagonalizable lifts (Theorem 4.1.14) to obtain a totally

real field F, a continuous representation 7 : Gp — GSp,(F), and a Hecke character x such that
* F, ~ K for all v|p;
* Tlgp, =P
* 7 is unramified at all finite places not dividing p;
* 7 satisfies Taylor—Wiles conditions; and
* (7, x) is potentially diagonalizably automorphic of level unramified outside p.

Since 7 is vast and tidy, there exists a place v9 ¢ S, such that ¢,, # 1 mod p, no two eigenvalues of
7(Frob,, ) has ratio g, and the residue characteristic of v is > 5 ([Box+21, §7.7]). We take U? < G(AZ"?)
by setting U, = G(O,) for v # vy and U,,, = Iwy (vp).

Fix a place w|p of F. Let ¢, € ¥(p). Then there exists a unique ¢, € ¥(7,) such that 1, ~ 1, for
each v € S, as a character of Gp, ~ Gi. We apply the construction in §5.4.6 by taking S = S, U {vo},
R =0,and D, = Dvav for each v € S. Again by choosing Taylor—Wiles datum and the nonprincipal
ultrafilter independent of v,,, {Mg’o” }w () is a congruent set of fixed similitude patching functors for 7,.

Let a be an integer such that HT(¢,,) = a for all j € J. There exists a unique integer k such that
a = 2k + b where b € {3,4}. For each a, we can and do choose a type (Aq, 7,) such that

. k(1,1;2) ifb=3
“ (1,0,0)+k(1,1;2) ifb=4

and w(p**, 74) = tx,+n (using Lemma 5.1.6 in the maximally nonsplit case). We take the ring R in §5.2 to
be

2 Aat+1,Ta %o\ S
(®1}ES,)\{1U}R7‘GJ;U Ter )®ORUO [[1'1, ey azg]].

Note that in the tame case, R” is formally smooth over O by Theorem 5.1.4 and [Box+21, Proposition 7.4.2].
Set RYw = RﬁD Vw0 RP. We define a functor

Mg’c’“ : Repy (GSp,(Ok)) — Mod(ng’)
V = Homoyasp, (0,)] (M2, (®ues,\{w},00° (Aas Ta)) @0 V)¥)Y

and claim that { M, 3’0 }¢,we<p(p) is a congruent family of potentially diagonalizable minimal fixed similitude

patching functors for p.
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For a type (A+7, T) (resp. a Serre weight o), the maximal Cohen—Macaulay property of M Y%= (6°(\, 7))
(resp. MY» (o)) follows from Proposition 5.4.7.
By Lemma 2.5.11, we have

JH(T( A\, 7a)) O W (7™|1,0) = {Fp(e)}-
For V' € Repg" (GSp,(Ok)), Theorem 5.4.4 implies

M (V) = Homocsp, (0,)] (ML, (®ues,\ {0} T (X0, T0))" ®o V)

= Homoycsp, (0,)] (M2 /@, (Dpes,\(uw) F5(€)" @F V).
Since { M} 5 is a congruent set of fixed similitude patching functors, this shows that { M2} pocu) 1
a congruent family of fixed similitude patching functors for p. In the tame case, RAs+"7«¥w[1 /p] is regular
and thus M¥%» (6°(\, 7))[1/p] is locally free over its support. Moreover, it has rank one; this can be checked
at finite level, which follows from the multiplicity one assertion in Theorem 2.4.1, the choice of vy and Hecke
operators at vy, and [Box+21, Proposition 2.4.3, 2.4.4]. This proves that {M;@w } o €U(D) is minimal in the
tame case.

Finally, we show that MYv is potentially diagonalizable. Note that, for each v € Sp\{w}, there exists a
potentially diagonalizable lift of 7|g . of type (A, + 1, 74). If p is a potentially diagonalizable lift of p of
type (A + 7, 7) compatible with 1),,, we can apply [PT21, Theorem 3.4] to find a potentially diagonalizable
lift 7 of 7 with sim(r) = 9. By [EL, Lemma 4.4.4], r is automorphic, which implies that M¥= (c°(\, 7)) is

nonzero. ]

5.4.8 Ihara avoidance patching functors

We construct congruent patching functors for “Ihara avoidance” argument. We apply this to the modularity
lifting result in §6.3.

Let7 : Gr — GSp,(F) be a continuous representation and x be a Hecke character. We assume that
1. 7 satisfies Taylor—Wiles conditions;

2. 7 is unramified at all finite places not dividing p; and

3. (7, x) is automorphic.

We apply the construction in §5.4.6 to two different setups: we let S to be a finite set containing S, U{vo}
and take R = S\ (S,U{vo}). Foreach v € R, we take {, = ((y,1, v,2) to be either a pair of trivial characters
for all v € R, which we call the trivial case, or a pair of continuous characters such that ¢, 1,(,2 # 1
Cv1 # Qf; for all v € R, which we call the non-trivial case. In the trivial case (resp. the non-trivial case),

we obtain the following data
1. a global deformation problem S (resp. S¢) and aring Rs, (resp. Rs,) representing it;
2. afixed similitude patching functor (¢, RAY , Molgw”) (resp. (¢, Régf"?, Mgg’,w”)) for 7

3. a0[G(0,)]-module

MU= dim (Sy(H - UP(R),O)ps )Y (esp. M%7 = lim  (Sy(H - UP(R),O)ns  ¢,)").
H<G(0y) H<G(0,)
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Proposition 5.4.9. We continue using the notation above.
o . Ly o Lty Cbp gy pCotbp
1. The fixed similitude patching functors (V¥p, Roo *, M33'™) and (v, R, M) are congruent.

2. The following diagrams of S..-algebras commute

R —— Ends,_ (M) RS —— Ends__ (M)
lmod oo lmod oo lmod oo lmod oo
Rsl —_— EIId@(Ml’wp) RSC E— Endo(MC’%)

where the top rows modulo 0, are isomorphic to the corresponding bottom rows.

3. The isomorphism MY Jw =~ MY /@ reduced modulo ., is the natural isomorphism MY¥» |oo ~
Mngp /w

Proof. Since all objects in the G(Op)-patching data in the trivial and non-trivial cases are congruent modulo

w, item (1) follows immediately. Item (2) and (3) follow from the construction. O



Chapter 6

Applications

6.1 The Breuil-Mézard conjecture

We first state the geometric and versal Breuil-Mezard conjectures for GSp, following [Le+a, §8.1].

Recall that the algebraic stack Xsym red is equidimensional of dimension 4 f and its irreducible compo-
nents are labeled by Serre weights of GSp, (k). We write Z[Xsym req] for the free abelian group generated
by irreducible components of Xgym req. We call elements in Z[Xsym rea] cycles and Cp € Z[Xsym rea] for a
Serre weight o an irreducible cycle. A cycle is effective if it is a sum of irreducible cycles with non-negative
coefficients.

For a type (A + 7, 7), we define a cycle Z) » := > _ s (Xg‘ym’FT)CJ € Z[Xsym rea) Where fi, (Xs?\yz’FT)

is the multiplicity of C,, as an irreducible component of XS)‘;I?’I: in the sense of [Stacks, Tag ODR4].

Conjecture 6.1.1 (Geometric Breuil-Mezard conjecture for GSp,). Let S be a set of types. For each o €
JH(@(S)) = Ungn,r)esJH(T(A, 7)), there exists an effective cycle Z, € Z[Xsym rea] such that for all
A+n,7) €S,

2y = Z [G(A,7T): 0] Z,.

oc€JH(a(A,7))

Let 5 € Xsym(F). We fix a versal ring RZ*" for Xsym at p. For example, we can take RZ*" = R%' the
framed deformation ring. For a type (A + 1, 7), we define
Spf RETAIT = Spf RY™ x v, XGHIT

7 Sym

Spf R%® := Spf Y X x,,,, Xsym red-

Note that the versal map Spf R%lg — Xym,red 18 effective and arises from a map i : Spec R%lg — Xsym,red-
The map 75 induces a surjective map from the set of irreducible components of Spec R%lg to the set of
irreducible components of Xgyr, req containing p ([Stacks, Tag ODRB]). Define Z[Spec R%lg] as the free
abelian group generated by irreducible components of Spec R%lg. We interpret Z[Xsym red] and Z[Spec R%lg]
as spaces of functions on sets of irreducible components. Then we have a pullback

in: Z[Xsym red| — Z[Spec R%lg].

86
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We define 2, ,(p) := i5(2 - ). The cycle 2, ,(p) is equal to the cycle corresponding to Spec Y™ AT S
([Stacks, Tag ODRD]).

Conjecture 6.1.2 (Versal Breuil-Mezard conjecture for GSp,). Let S be a set of types. For each o €
JH(T(S)), there exists an effective cycle Z,(p) € Z[Spec Rilg] such that for all (A +n,7) € S,

2= Y BT :0lZ(p).

oceJH(E(A,7))

Let A C X, (T") be a finite set of dominant cocharacters containing 0. We define S, as the set of types
(N +n,7) where ' < Xand 7 is Py e Po2n,,,-generic for some A € A. The following is the main result

of this section.

Theorem 6.1.3. Let p be a 22-generic semisimple L-homomorphism. For each Serre weight o, there exists
an effective cycle Z,(p) € Z[Spec Ra 8] such that

2= Y BT :0]Z(p).

oeJH(a (A, 7))

Sforall (A +mn,7) € Sa.

Before we prove the Theorem, we discuss about cycles in the fixed similitude deformation ring. Suppose
that C' is an irreducible component in Spec R/\+"’T’w’) /w for a type (A + 7, 7) and ¥, € (p). By Lemma
5.1.2, unramified twists of C give an 1rredu01ble component Cc Spec RAJF" T
is independent of the choice of (A + 7, 7) and 1,,.

Let Z[R)“"] be a free abelian group generated by 4[K : Q,] + 10-dimensional cycles in Spec RﬁD /@
A+n,

/wo. Its image in Spec R%‘/w

supported in the union of Spec R T /w for all choices of a dominant character A € X*(T'), a (possibly
trivial) tame inertial L-parameters 7, and the unique character ¢, € ¥(p) compatible with (A, 7). By the

previous paragraph, there is a natural injective group homomorphism

(-) : Z[RY™"] = Z[Spec R%¥] (6.1.4)

such that Z(Rg'm’ﬂw” Jw) = Zx-(p) for all A, 7, and ¢, as above.
Let R be a Noetherian F-algebra. Given a R-module M, we let Z(M) denote the cycle

Z pe(M)C € Z[Spec R]

where C ranges over irreducible components of Spec R, and pic (M) denotes the length of the module M,
over Ry for the prime ideal p¢ corresponding to C.

Proof of Theorem 6.1.3. By Theorem 5.4.2, there is a congruent family of minimal fixed similitude patching
functors {Mgép}wpeq,@ for p. For a Serre weight o, we define Z,(p) := Z (Mg:f (o)) for some choice of
1, € ®(p). Note that this is independent of the choice of v,,. For any (A +n,7) € Sa, R%JF"’T is domain by
Theorem 4.4.3. Let ¢, € ®(p) be the unique character compatible with (A +7, 7). By [EG14, Lemma 2.2.7,
2.2.10] and the definition of (6.1.4), we have Z(Mw”( (A, 7)) = Zx~(p) and

ZMZENT) = Y BT :0lZ(MLZ(0)). H

o€JH(a(A,7))
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We explain how one can interpolate Theorem 6.1.3 to prove a version of geometric Breuil-Mezard con-
jecture. We follow the axiomatic argument of [Le+a, §8.3]. Let Py be the set of 5 € Xgym (F') such that 5|7,
is 22-generic tame inertial type for K over F'. Note that Theorem 6.1.3 holds for p € Pys and (A+n, 7) € Sa.
We define a set S, A to be a union of Sy and a set of types of the form (), 7) where 7 is 6-generic. We also
define a set §Ayehm to be the union of S, A and the set of types (7, 7).

Definition 6.1.5. Let p € Pg. We say that a Serre weight o is (p, S, Aelim)-irrelevant if there exists a type
A+n,7) € gA,elim such that 0 € JH(a(A, 7)) and R%J””T =0.

Lemma 6.1.6. Any o ¢ W’ (pl|1,.) is (P, :S\A_,Chm )-irrelevant.

Proof. Note that any Serre weight in W’ (5|7, ) is 19-deep by Proposition 2.5.8. If ¢ ~ F(\) and \ is not
12-deep, the third and the last paragraphs of the proof of Theorem 5.4.4 shows that o is (p, S, A elim)-irrelevant.
Suppose that o ~ F()\) is 12-deep and not (p, S\A,Chm)-irrelevant, ie. R%H” #0for(AN+1n,7) € <§A7Cnm
such that o € JH(G(\,7)). For each s € W, let 7, = 7(s,wp, - A + ) be a 9-generic tame inertial L-
parameter. Since F'(\) € JH( (7)), we have R7%.™ # 0. Then Proposition 5.1.3 and Lemma 2.5.12 imply
that F'(\) € W’ (7)) (as explained in the first paragraph of the proof of Theorem 5.4.4). O

Lemma 6.1.7. 1. Suppose C, C Xs)‘yt[?l; for some (A + 1, 7) € Sa. Then there exists p € Pss such that
5EC,.

2. Let Z[C(Sn)] be the Z-span of all irreducible components in Xs)‘;rn?; Sfor some (A +n,T) € Sp. Then
the map

in. 0= |1 Blzicsay 2SO = ] Z[Spec R?|
PEPss PEPss

is injective. Moreover, Z € Z[C(Sn)) is effective if and only if i5(Z) is effective for all p € Pss.

Proof. 1. By Theorem 4.5.2,C, C Xg‘yﬁ; for some (A + 7, 7) € Sy implies that o € JH(G(A, 7)). By
Proposition 4.5.6, it suffices to find p € Py such that 0 € Wy, (p|1, ). This can be proven as [Le+a,
Lemma 8.4.9].

2. This easily follows from (1) (see Lemma 8.2.2 in loc. cit.).

Lemma 6.1.8. For any Serre weight o, there exists integers nS__ such that

o= > 8.7

(A+n,7)€8A

is supported only at (PSS,§A7elim )-irrelevant Serre weights. In other words, §A is (77557§A,e1im )-Breuil—
Mézard system in the sense of [Le+a, Definition 8.3.3].

Proof. This can be proven as [Le+a, Lemma 8.4.4] using Lemma 6.1.6. O

Lemma 6.1.7 shows that for each o as above, if there exists Z, € Z[C(S4)] such that i%(Z,) = Z,(p)
for all p € Py, then Conjecture 6.1.1 for S = S, follows from Theorem 6.1.3. Due to Lemma 6.1.8, one



CHAPTER 6. APPLICATIONS 89

may hope to define Z, by

§ o
n)\,rz)\y‘f'

(A+n,7)€8A

However, the condition i%(Z,) = Z,(p) may not hold in this case. This is because Theorem 6.1.3 does not
apply to (A +1,7) € Sh \Sa. This motivates the following definitions.

Definition 6.1.9 (cf. Definition 8.3.3 in [Le+a]). Let o € JH(5(Sy)) be a Serre weight.
1. We say that o Sy-covers o’ if for (A +n,7) € Sx such that o € JH(G(\, 7)), C, lies in X3
2. We say that o is (Sa, S, A )-generic if for all Serre weights o’ such that o Sy-covers o, Cyr does not lie
in XS)‘VZ’E forany (A +1,7) € Sy\Sa.
Lemma 6.1.10. Suppose o and o’ are 9-deep Serre weights, and o S, r-covers o’ Then o’ 1 o.

Proof. Let T be a 6-generic tame inertial L-parameter such that ¢ € JH(5 (7). Since o Sy-covers o,
Cor C X&), - By Theorem 4.5.2, we have o’ € JH(&(7)). In particular, o covers o’ in the sense of [Le+a,
Definition 2.3.10], i.e.

o € N JH(5(T)).
T 6-generic
o € JH(a (1))

Then our claim follows from the equivalence between item (1) and (4) in Proposition 2.3.12 in loc. cit. using
9-deepness of o and ¢’. (Note that in our setup, if W € W+ and wy T w for some w € W+, then w; € WfL
Thus L(7~!(w) - (w — n))|c in item (4) in loc. cit. is equal to F(7~'(wy) - (w — 1)) = F(g,w) and
Fia,w) T Flaw-) O

Let Sp_. o C Sy be the subset consisting of (A+n, 7) such thatall o € JH(G (A, 7)) are (Sy, §A)-generic.

For o € JH((S,)), we define tr, g, anidempotent endomorphism of Z[Xsym vea] Which maps Co/ to it-

selfif o S, A-covers ¢’ and to 0 otherwise. The following Lemma shows that tr_ §, climinates the contribution

of types that Theorem 6.1.3 does not apply to.
Lemma 6.1.11. If o is (Sx, Sy )-generic, we have tr, 5 (2x,r) = 0forany (A +n,7) € Sx\Sa.
Proof. This follows from the definition of tr 5K O

Forp € Py and (Sy, S 'A)-generic o, there is an unique idempotent endomorphism tr, ¢ (p) of Z[Spec R%lg ]
satisfying the following condition (see [Stacks, Tag 0DRB, Tag ODRD])
izotr, g =tr g (p)ois (6.1.12)

P 0,5 o,SA

Then we have the following equality (see, [Le+a, Lemma 8.3.7])

tr, 5.(7)(Z+(9) = Z.(p). (6.1.13)


https://stacks.math.columbia.edu/tag/0DRB
https://stacks.math.columbia.edu/tag/0DRD
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Theorem 6.1.14. For each (S, gA)-generic o in JH(G(Sp,, A)), there exists a unique effective cycle Z, in
Z[Xsym vea] with the support contained in {Cy|r 1 o} and for each p € Pss, i5(Z25) = Z,(p). Moreover, for
(A+n,7) € Sp__ A, we have

2y = Z [G(A,7T): 0] Z,.

oce€JH(a(A,7))

In particular, Conjecture 6.1.1 holds for S = Sp__ A.

58

Proof. We define

Zy = tr, &, Z ns - Zxr
(A n,7)ESA

For each 5 € Py, choose a fixed similitude patching functor (7, ng, Mfff) We have

Z,(p) = Z(M¥2(0))
= > 0l ZMLGE\T)))

(A+n,7)ESA
= > o, tr, 5 (A(Z(ML(EAT))
()\+n,‘r)€§A

= Y nf.tr, 5 ((ZMEEN))
(A+n,m)ESA

= s, ((Ear )
(An,7)ESA

where the first equality is by definition, second equality follows from Lemma 6.1.8 and 6.1.6, the third
equality follows from (6.1.13), the fourth equality follows from Lemma 6.1.11, the fifth equality follows
from the proof of Theorem 6.1.3, and the final equality follows from the definition of Z, and (6.1.12). Now

the uniquiness and effectivity of Z,, as well as the claimed equality, follow from Lemma 6.1.7. O

Remark 6.1.15. If there is a Breuil-Mezard system &' containing Sy such that Sy is a (P, 8’)-Breuil—-
Mezard system and Conjecture 6.1.1 holds for &', then the cycles constructed in Theorem 6.1.14 conincide
with those in Conjecture 6.1.1 for S (cf. [Le+a, Theorem 8.3.5(4)]).

Although the set Sp_, A is not characterized by genericity conditions, there is a smaller subset that is
characterized by genericity conditions. Given a polynomial f € Z[X1, X5, X3] and w € X*(T) ~ Z3,
define

f9(X1, Xo, X3) = 11 f(Xh =11, Xo — 10, X3 — 13)

v=(v1,v2;v3)€Conv(w)

We also define

PPSS,A,e - H(P)‘+77,E H ﬁé?é+ﬁ—wo(n))j).
AEA jeg
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The following Lemma is a straightforward generalization of [Le+a, Lemma 8.4.11, 8.5.1].

Lemma 6.1.16. 1. If 7 is a tame inertial type for K with lowest alcove presentation (s, — n) with
Pp, 5 e-generic p, then (A +n,T) € Sp, A forany A € A.

EER] EER]

2. If p is a tame inertial type for K over F with a lowest alcove presentation (s, jr — 1) with Pp_ A -
generic p, then for any tame inertial T type for K with a lowest alcove presentation such that w(p, T) €

Adm" (X +1n), then (A +n,T) € Sp.. A for any A € A.

Corollary 6.1.17. For each Serre weight o, there exists an effective cycle Z, in Z]Xsym yed] With the support
contained in {C.|k 1 o} such that for any X\ € A and a tame inertial type T for K with a lowest alcove

presentation (s, ji,) with Pp__ A .-generic i,

2y = Z [c(\,7): 0] Z,.

oc€JH(a(A,7))

Proof. By Lemma 6.1.16, for any A and 7 as above, all o € JH(/(X, 7)) is (Sa, Sy )-generic. Then the claim
follows from Theorem 6.1.14. O

Finally, we can use Corollary 6.1.17 to prove versal Breuil-Mézard conjectures for (not necessarily tame)

p with polynomial genericity.

Corollary 6.1.18. Letp : Gx — GSp,(F) be a continuous representation. Suppose that p*°|r,. has a lowest
alcove presentation (s, j —n) with Pp_ ¢ Pas-generic p. Then for each Serre weight o, there exists a cycle
Z,(p) € Z[Spec R%lg] such that for any A € A and any tame inertial type T for K,

Z(R; @) = Y [0\ 7) : 026 (p).

o

Proof. If o is (Sy, Sy )-generic, we define Z,,(p) = i%(Z,) with Z, as in Theorem 6.1.14. Otherwise, we
define Z,(p) = 0. If (A +n,7) € Sp__a, then all 0 € JH(G(A, 7)) are (Sa, Sa)-generic, and the claim
follows from Theorem 6.1.14.

If (\+n,7) ¢ Sp...a, we have w(p,7) ¢ Adm"(\ + 1) by Lemma 6.1.16. Then Proposition 5.1.3
shows that R%J””T — 0. It remains to show that Z, () = 0 for all o € JH(a(A, 7). If & is not (Sx, Sy )-
generic, this is automatic. Suppose that o is (Sa, Sa)-generic and Z,(p) # 0. Then the support of the
cycle Z, contains the point o € Xgym red(F). This implies that p*° is in the support of Z,. In particular,
Z,(p%) = Z(M¥(c)) # 0. However, this implies that Rg:E"’T # 0. Then w(p,7) € Adm(\ + 7)
by Proposition 5.1.3(2). By Lemma 6.1.16(2), this contradicts our assumption (A + n,7) ¢ Sp_ . This

concludes the proof. O

6.2 The weight part of a Serre’s conjecture

Let F, x,7 be as in §5.3. We further assume that 7 is automorphic of some weight p and level U. Recall
that W (7) is the set of modular Serre weights of 7. The following conjecture is due to Gee—Herzig—Savitt
([GHS18D).

Conjecture 6.2.1. If7|q,, is tame and sufficiently generic at v

p, then W(T) = W?(Fp‘lqp )-
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Following [Le+a, §9.1], we formulate a version of this conjecture without the tameness hypothesis.

We say that a Serre weight o is generic if o is (Syoy, g{o})-generic. Note that if o is generic, then it is
(Sa, Sy )-generic for any finite set of dominant cocharacters A C X, (T") (cf. [Le+a, Lemma 8.4.8]). We let
Wen () be the subset of generic Serre weights in W (7).

Definition 6.2.2. Let5 : Gq, — “G(F) be an L-parameter. We define WEM(5) tobe asetof 0 = @yes, 04

gen

where o, is a generic Serre weight such that p,, is contained in the support of Z,  defined in Theorem 6.1.14.

Using this recipe, we can formulate a generalization of Conjecture 6.2.1 for 7 not necessarily tame at

places above p.

Conjecture 6.2.3. The set W, (F) is equal to WEM(7,).

gen

We also define W (7)) = {0 = ®yes,00 | 00 € Wy(Tplay, )} aset of Serre weights of GSp,(Or /p),
where W (7} |, ) is the set defined in Proposition 4.5.6. Note that any o € W,,(7,) is 3-deep.

Let Xsym,F, := Hve $,,0 Xsym,F,. By Theorem 4.1.10, there is a bijection between irreducible compo-
nents in the underlying reduced substack Xy, F, rea and isomorphism classes of Serre weights of GSp,(Or/p).

If 0 = ®yes,0, is a Serre weight of GSp,(OF /p), we denote its corresponding irreducible component by

Co = Hvesp,o Co,-

Lemma 6.2.4. Let o € Wy(7},). Let Ry, := ®U€SpRE\G with a versal morphism
F'U

b7, * R?p — XSym,Fp-

If 7y Iq, S 22-generic, then ”;,, (Cy) is an irreducible cycle corresponding to an irreducible subscheme
Co(Tp) C Spec Ry, /w. Moreover, if Co C [],eq, 0 XS/\;;%? then C, () is contained in Spec R%\:"’T/w.

Proof. By Proposition 4.5.6, W,(7,) € W’ (Tpl1q,)- By Lemma 2.5.14 and [Le+a, Remark 2.1.8], there
is a tame inertial L-parameter 7 with a lowest alcove representation such that w(p|rq,,7) € Adm(n) and
o € JH(a(7)). Since p is 22-generic, such 7 is 19-generic. Then the first claim follows from Theorem 4.5.4

and Proposition 3.7.3. The second claim follows from the definition of C, (7). O
The following is the main result of this section.

Theorem 6.2.5. There exists a polynomial P(X1, Xo, X3) € Z[X1, Xo, X3] independent of p such that if
7 : Gp — GSp,(F) is automorphic, satisfies Taylor-Wiles conditions, and for each v

D, TlGp, is tame with

a lowest alcove presentation (s, 1, — 1) with P-generic ., then the Conjecture 6.2.1 and 6.2.3 hold for T.

Proof. We claim that there exists a polynomial Q (X1, Xa, X3) such thatif s, is Q-generic, then W” (7| Iq,) =
Wy (7p). It follows from Proposition 4.5.6(1) that W, (7,) C W (7). Let

QX1 X2, X3) =[] IT I Pe(X +ww, (0)).

TGEW /X O(T) Watw, w2 €W+ WEW

with the polynomial Py in Proposition 4.5.6. Let o € W (7| Iq,) With a lowest alcove presentation (0, w)
compatible with (s, u —n). If i, is Q-generic, then w, is Py (this can be checked directly using Proposition
2.5.8). Thus, Proposition 4.5.6(2) implies that W’ (Tpliq,) = Wy(Tp).

We take P to be the product P22P27],GP77706Q and assume that p,, is P-generic.
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Step 1. We first show that W (7) N1 Woby (Tp|1q,, ) is nonempty. Let 7 be the tame inertial L-parameter with
a lowest alcove presentation 7)-compatible with that of 7, and w(7) = W(Fp)t_;)—w,y (note that this condition
and P, . Pso-genericity of 1, imply that 7 is Pa,, . Pag-generic). By [Le+a, Lemma 2.6.7], w? (Fp\IQp) -
JH(c(n,7)). For the unique ¢, € ¥(7,) compatible with (277, 7) and a fixed similitude patching functor
MY for 7p (which exists by Theorem 5.4.2), the automorphy of 7 implies that M;po”(ao(n, 7)) # 0. By
Theorem 4.4.3 and P»,-genericity of 7, My (c°(n, 7)) has full support on Spec R;:’T’wp. By Lemma 6.2.4,
we have C,(T,) C Spec R%Z’T Jw for any o € W'(Ty|rq, ). Then there exists o' € W (Ty|rq,) such
that Z(Mépop (¢")) is supported on C,(7p). Since the support of Z(Mff}op (¢")) = Z,/(p) is contained in
{C.;|k T o'}, this in particular implies that o 1 ¢’. Take 0 ~ F(\) € Wby (F,,\IQP) such that \ is in the
highest p-restricted alcove. Then o 1 ¢’ implies that o = ¢/, and o is also contained in W (7).

Step 2. We show that Woby (|1, ) C W (7). Let 0 € Woby (Tp|1q, ). We can write o = Fy(w™") for
some w € W. We take 7 to be 19-generic tame inertial type such that w (7, 7) = t,,(;). By Lemma 2.5.11,
o € JH(T(7)).

There exists a unique v, € ¥(7,) compatible with (7, 7) and a fixed similitude patching functor MY
for 7. By the previous step, we can choose 0 € Woby (Tp1q,) N W (T). Then we have MLy (o°(10)) # 0.
Thus, there exists a lift 7y of 7 such that is potentially crystalline of type (7, 70,,) at v|p. By Theorem 5.1.4,
this shows that 7 is potentially diagonalizably automorphic. For an arbitrary o € W,y (7| Ia, ), we can
apply Theorem 5.1.4, [Boo19, Theorem 1.1], and [PT21, Theorem 3.4] to find a lift » of 7 that is potentially
diagonalizable of type (n,,T,) at v|p. By [EL, Lemma 4.4.4], r is automorphic and My (c°(1)) # 0. By
reducing modulo p, MY (o) # 0 and thus o € W (7).

Step 3. We show that W () = W (T, |1q ). Leto € W (7|1q, ) and 7 be the type satisfying conditions in
Lemma 2.5.14. Since JH(G (7)) "W (7|1, ) is nonempty if and only if JH(7 (7)) N Wby (7|1, ) is nonempty,
the previous step implies that M (c°(7)) # 0 and it has full support on Spec R%’]T, by Theorem 4.4.3 and
the Py -genericity of p1. Since C,(7,) C Spec R:l;f by Lemma 6.2.4, there exists ¢’ € JH(a (7)) such that
M;bop(a’ ) is supported on C,, (7, ). As we argued at the end of Step 1, we have o 1 ¢/, which implies o = ¢’
by Lemma 2.5.14 and thus o € W (7). Thus the Conjecture 6.2.1 holds for 7.

Step 4. It remains to prove that Weye, (7) = WEM(7,). Let o be a generic Serre weight. Then o is
(Sa, S, A )-generic. Let M;l)o” be a fixed similitude patching functor for 7, constructed in Theorem 5.4.2(1).
Then MY () # Oif and only if ¢ € W (¥). On the other hand, o € Waen (Tp) is equivalent to 7, € 12 (Z,),

which is equivalent to Mg)o‘“ (o) # 0 by the construction of Z,,. Thus the Conjecture 6.2.3 holds for 7. O

6.3 Modularity lifting in generic tamely potentially crystalline case

We prove the following modularity lifting result.
Theorem 6.3.1. Letr : Gr — GSp,(FE) be a continuous representation satisfying following conditions:
1. 7 is unramified at all but finitely many places;

2. r|gy, is potentially crystalline of type (A, + 1y, Ty) With a lowest alcove presentation (., j, — 1)

with Py, c-generic [i,;

3. 7 satisfies Taylor—Wiles hypothesis;

4. T|gy, is tame at v|p; and
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5. T =~ Trp, for some cuspidal automorphic representation m of GSp,(Ar) of weight \ and central

character x such that o(t,) is a K-type for 7 at v|p.

Thenr ~ rx, , for some cuspidal automorphic representation @ of GSp, (A ) of weight X central character

X such that o(7,) is a K-type for 7 at v|p.
The Theorem follows from the following Lemma and base change argument.

Lemma 6.3.2. Letr : Gr — GSp,(FE) be a continuous representation satisfying following conditions:
1. r is unramified at all but finitely many places;

2. if v is ramified at a place v { p, then T|q,, is trivial, r|c,, has only unipotent ramification, and

qw = 1 mod p;

3. r|gy, is potentially crystalline of type (A + 1y, Ty) With a lowest alcove presentation (s, fly — 1)
with Py, c-generic [i,;

4. 7 satisfies Taylor—Wiles hypothesis;

5. Tlay, is tame at v|p; and

6. T ~ Trp, for some cuspidal automorphic representation ™ of GSp, (A ) of weight A central character
X such that o(7,) is a K-type for 7 at v|p and for all finite places v of F, (m,)™(®) # 0.

Thenr ~ rx, , for some cuspidal automorphic representation @ of GSp,(Ar) of weight X central character

X such that o(7,) is a K-type for 7 at v|p.

Proof. We apply Proposition 5.4.9 to F, x, S = S, U {vp}. By the assumptions on r, it gives an FE-
point of Spec Rs,. On the other hand, 7, gives an E-point of Spec Rs,. Thus the module M X¥p g
nonzero. By Theorem 4.4.3, Py, .-genericity of u, [Box+21, Proposition 7.4.2], and Proposition 5.1.8(2),
MSPr (o°(A, 7)) has full support over Ry, By the congruence between MY and MQY?, MY @\, 7))
has full support over RIMT /. Then by Proposition 5.1.8(1), Miéwp(ao()\, 7)) has full support over
RN This proves the claim. O

Proof of Theorem 6.3.1. There exists a solvable extension of totally real fields F’/F satisfying the following

conditions:
1. F'/F is linearly disjoint from Fe'™;
2. any place v|p of F splits completely in F’;

3. if r|q,,, is ramified at a place w of F” lying over a place v { p of F', then ?|Gp/ is trivial, r|g,, has

only unipotent ramification, and gq,, = 1 mod p;

4. there is a cuspidal automorphic representation 7’ of GSp,(Ap-) of weight A’ = (), where A, = A,
for a place v of F' and w|v, which is a base change of r, and for all finite places w of F”, (/,)"(®) #£ 0
(here we use [Mok14, Proposition 4.13]).

Then by [Box+21, Lemma 8.3.2] (which easily generalizes to our setup), it suffices to show that there exists
a cuspidal automorphic representation 7’ of GSp,(Af) of weight A’ such that for a place w|p of F’ above a

place v of F', o(7,) is a K-type for 7 at w, and 7'|GF, ~ 1% p,.. This follows from Lemma 6.3.2. O



Appendix A

Torus fixed points of certain affine

Springer fibers

In this chapter, we explain how the main result of [Boi] generalizes to the group GSp,. Let Fl¢ be the
affine flag variety over C whose C-points are given by GSp,(C((v)))/Zc, where Zc C GSp,(CJv]) is
the Iwahori subgroup. Let a € Lie GSp,(C) be a regular semisimple element. We consider the affine
Springer fiber Fl,, associated to the element va € Lie GSp,(C((v))). The C-points of Flc correspond
to Iwahori subalgebras inside the loop algebra Lie GSp,(C((v))), i.e. GSp,(C((v)))-conjugates of the Lie
algebra of the Iwahori subgroup. Under this correspondence, the C-points of Fl,, are characterized as
Iwahori subalgebras containing the element vs. If g € GSp,(C((v))), then its image in Flg(C) is in Fl,, if
and only if va € gLT Mcg™", or equivalently, g"*ag € 1 LT Mc.

Recall that Fl¢ admits T-action induced by the left multiplication on LGSp,. The T-fixed points of
Fle are given by the image of the map W — Flc(C) sending wty to ¢(w)v~?NZe. Note that this is a
composition of the map (—)* : W — WV, taking inverse on WV, and the natural embedding of WV into
Flc(C). For simplicity, we write the image of @ under this map by w™*. We want to further understand
which of these T-fixed points are contained in Fl,,. Let w € W. We define

Floa (@) := GSp,(C[v]) & *Zc/Tc N Flya.

By [Boi, Proposition 2.1], if w € Wfr , then Fl,, (w) is irreducible of dimension 4. Let Fl,, 4 be the closure
of Flya(w) inside Fl, 5.

Remark A.1. Suppose that w € W is equal to w’'é for some w’ € W, and § € 2. Since §~* normalizes Z¢,

we have Fl,a 5 = Flya /6.

Remark A.2. Note that we use the right quotient by Iwahori to define the affine flag variety Flc, as opposed
to the left quotient in the body of this thesis. These conventions can be compared by taking inverse at the
level of LGSp,. This also explains the difference between the embedding of the affine Weyl group W into
the loop group LGSp, in this appendix and the body of this thesis (which are differed by taking inverse).

Theorem A.3. The set of T-fixed points of Flya 5 is given by

FIL, - ={Z*|Ze W,z <wu}.

va,w

95



APPENDIX A. TORUS FIXED POINTS OF CERTAIN AFFINE SPRINGER FIBERS 96

Proof. We follow the proof of [Boi, Theorem 3.1] with minor modifications.
By Remark A.1, it suffices to consider w € W,. Let w be an element of W". By noting that wFl,, 5 =
Flyw(a),a: 2 * € Flya,g if and only if wz™" € Flyy(a),5- Thus, it suffices to show that
F*|zewtV,z<a} cFIL 4
Let @' := T (). Recall that there exists a 6-dimensional affine subvariety M®" inside L*U 4 defined in
[Boi, Appendix B.2]. We define M® := M® N L*GSp,. By Lemma B.2 in loc. cit., we have

M4 *Ic/TIc C Flya g

Note that M P w~*Z¢ /¢ is contained in the lower triangular Iwahori orbit, which is locally closed and affine
by [GKMO6, Theorem 0.2]. Since both are 4-dimensional affine spaces, they have to be the same. Moreover,
since Fl,4 g is also 4-dimensional, M V=T /Zc is open (and dense) in Flya,g-

For z € W, there exists a neighborhood Uz = 27*L~UZ¢/Zc C Flg such that z~* is in Fl,,, 4 if and
only if Uz N M{E{D*IC/IC is non-empty (see Lemma 3.1 in loc. cit.).

It remains to prove that the intersection M Y@ *Zg /Zc N Uz is nonempty for z € W such that Z < w.
Indeed, we prove a slightly stronger statement. Let wy € W, be the element corresponding to the highest

restricted alcove. We show that
MG *Te/Tc N Uz # 0. (A.4)

As explained in Appendix B.3 of loc. cit.(also, see Lemma B.1), this follows from a non-vanishing of certain
matrix determinant. To explain this, we introduce some notation.

We view Flc as a subset of affine flags in a 4-dimensional C((v))-vector space. Let eq,...,e4 be the
standard basis of the C((v))-vector space. For vectors vy, ..., v, we let (vq,...,v4) be the C[v]-span of
V1y...,0q and (vy,...,v4),-1 be the C[1/v]-span of vy, ..., vs. Then (A.4) holds if and only if

o ~— g 1 -1
MY w™"(e1, ... e1,v0€41,...,ve4) NZ" (V" "e1,..., 0" €, €41,...,€4)p-1 =0 (A.5)

for all 0 <1 < 3. In our case, we can check these conditions directly.

We have
1
Mo — verpAan 1
c13A31 + ve123 A1 Aso c23A30 1

2
v(c14Aa1 + 124421 Aas + 134 A31Auz) + v7Cr230A21 Az Auz  CoaAus + vCagaAzaAug vezaAas

where the condition on GSp, implies

c34 A4z = —c1242
c24 A4 = c13431

c123A21 A3 = 234 A32Ays.

We can write down the matrix representation of M o with respect to vkej forallk € Z,1 < j < 4.
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However, to check (A.5), we only need to consider finitely many vkej’s. Letw; = (1,...,1,0,...,0) be the

cocharacter of GL4 whose first [ entries are 1 and the remaining entries are 0. Note that w(ey, . .., e;, ve11, ..., veq)
contains v!~®“@a (e, ... e4) which s stabilized by M 0. Similarly, Z=*(v ey, ..., v " es, €141, . - ., €4)p-1
contains v~ (@i (e1,...,e4),—1. Thus, we can only consider v’“ej’s whose image under M *° is not con-

~

tained in the union of v' =% (e, ... ey) and v™> (“Wi(e;, ... e4), 1, and there are only finitely many
of them.

Now we compute a block matrix whose ij-th block, for 1 < i < (1 — w(w;)4) — (=27 *(wi)1) — 1
and 1 < j < (1 — @(w;)4) — (1 — @(w;)1), is a matrix representation of M with respect to the linearly
independent vectors

v(l—ﬁ(wz)l)Jrjflel7 o 7U(1*5(wz)1)+jfler

1;; in the domain

p(ZF DT Ly (FE @) e i the codomain,

where ry;; is the maximal integer such that v(l’w(‘”l)l)“’ler”j € wlei,..., e, Ve 41,...,veq) and sy
is the maximal integer such that v(=% "(@DV+ie, ¢ Z=*(v=ley, ... v ey, 41, ..., €4),-1. Then (A.5)
holds if and only if this block matrix has a trivial kernel after specializing all A,,,,,’s to some complex numbers
satisfying the required relations.

For simplicity, we check this for w = wg and z = e, and the remaining cases will be a straightforward

computation. When [ = 0, the block matrix is given by

0 1 0 0

c12491 0 1 0

c123A21 A3 c13A431 2343z 1

c14A41 + c124A21 As2 + 134431 Ay 0 c24A42 0

(Note that in this case and the cases | = 1, 2 below, the first row of blocks is empty.) One can easily see that
the determinant has a non-zero term c14A4; (which is not affected by the condition imposed by GSp,).
When [ = 1, the block matrix is given by

0 1
c12421 0 1

c123A21 A3z | c13A31 a3z

whose determinant obvious does not vanish everywhere.

When [ = 2, the block matrix is given by

0 1 0
c12401 0 1
0 0 0 1 0 0
0 c12421 0 0 1 0
0 c123A21 A32 0 c13A31  ca3Azz 1
1234421 A32 A3 | c1adan + croaAo1Aus + 134431 A4z 234 A32A43 0 c24A42 0

In this case, one can observe that the determinant has a non-zero monomial c;4 A4, which is not affected by

the condition imposed by GSp,. Thus the determinant does not vanish everywhere.
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Finally, when [ = 3, the block matrix is given by

1 0
0 0 1
c12A21 0 0 1
c123A21 432 0 c13A31  ca3Azp 1
c1aAq1 + c124A21 Aga + 134431443 231432443 0 c24A42 0

and its determinant is equal to —ca34 A32 A43 Which does not vanish everywhere.
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