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We study capturing construction schemes, a new combinatorial tool introduced by Todorc¢evié
to build uncountable structures. It consists of a ranked family of finite sets that provides a
framework to do recursive constructions of uncountable objects by working with finite amal-
gamations of finite isomorphic substructures, the uncountable substructures of the final object
can be further study using capturing.

In this Thesis we study the consistency of capturing construction schemes, and related defi-
nitions, we prove results of consistency, and give several applications of this tool both to infinite
combinatorics and Banach space theory. For example, we show weaker forms of capturing, such
as m-capturing, form a strict hierarchy which is related to the m-Knaster Hierarchy. We also
show how capturing construction schemes can be used in constructing Suslin trees and Haus-
dorff gaps of a special kind in an intuitive manner. And give some applications to the theory

of nonseparable Banach spaces.
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Chapter 1

Introduction and Preliminaries

The aim of this Thesis is to study a class of ranked families called Construction Schemes and
their applications. The motivation for this work is the application of set-theoretic and combi-
natorial methods to certain areas of Functional Analysis that deal with nonseparable normed
spaces. In mathematics when dealing with objects that have metric or topological structure
one usually puts a separability condition with the hope of avoiding pathologies. Thus, there is
a deep and rich theory of, say, separable Banach spaces while the theory of arbitrary Banach
spaces is much less explored. When one analyzes this from a set-theoretic point of view one
sees that, while the nonseparable theory is indeed much more influenced by additional axioms
of set theory, what remains unexplored is in fact finite-dimensional amalgamation techniques
that are much more relevant to the nonseparable than separable theory.

Construction schemes can be used to build complex structures in a recursive manner in such
a way that one has some control over the uncountable substructures, thus making them easier to
understand and to study. Construction schemes serve as unification of completeness theorems
from model theory (see [Kei70]) and Forcing from set theory ([Coh66]). My work follows that
of Todor¢evi¢ [Tod17] where Construction Schemes are introduced and used to build several
Banach spaces relevant to certain well-known problems from nonseparable Functional Analysis.
It should be noted that similar spaces had previously been built using forcing by Lépez-Abad &
Todorcevi¢ [LAT11] , and Bell, Ginsburg, Todorcevi¢ [BGT82]. The spaces build with the use
of Construction Schemes are more intuitive which makes them accessible to experts in other
fields that have no background on the technique of forcing. Moreover they open the possibility
of reformulating open problems from nonseparable functional analysis as problems about finite-
dimensional amalgamations that could be accessible to a wider spectrum of mathematicians.

We illustrate in this Thesis how construction schemes can be used to recursively build com-
plex mathematical structures, and perhaps more important, is that the constructed structures
are rather canonical and their properties could be analyzed in a similar intuitive manner. To
analyze these structures Todoréevié¢ [Tod17] introduced the concept of capturing and showed
that Capturing Construction Schemes exist using Jensen’s Diamond Principle <.

The study of Construction Schemes presented in this work is done through three different
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perspectives which I will now list very broadly.

Consistency Strength of Construction Schemes: During our study of construction schemes
we noticed that some combinatorial constructions only require a weak version of capturing,
whereas the Banach space applications do not reflect this. That motivates the study of the
hierarchy of n-capturing construction schemes. In Kalajdzievski & Lopez [KL17] we study this
hierarchy and show its relationship with the m-Knaster hierarchy from the theory of Forcing
Axioms. We also show that adding w; Cohen reals adds fully capturing construction schemes.
This implies in particular that many standard techniques on Set Theory have important con-

sequences in the theory of non separable Banach spaces.

Combinatorial Applications: Several interesting objects well known to set theorist can
be built using capturing Construction schemes. In [LT17] we show how the existence of a
Capturing Construction Scheme imply the existence of a Suslin tree and a destructible gap.
Furthermore we show that a stronger form of destructible gap, named T-gaps, can also be
constructed with the same techniques. An interesting feature of these theorems is that we
only need a weaker form of capturing to carry out the constructions. Namely, we only need
3-capturing Construction Schemes. This is not the case on the applications to Banach Space

Theory where the full strength of capturing seems to be necessary.

Banach Space Applications: The theory of non separable Banach spaces is in recent years
becoming an interesting area for applications of methods of Set Theory. The main interest is
to see how much of the deep separable theory can be extended to the context of nonseparable
Banach spaces. Many examples of non separable Banach spaces relevant to this question appear
in [LAT11], such as for example Banach spaces with no uncountable biorthogonal systems but
with uncountable e-biorthogonal systems for 0 < £ < 1, or Banach spaces with uncountable
Schauder basis of basis constant K that do not have uncountable (< K)-basic sequences for
K an arbitrary constant bigger than 1. These examples show a striking discrepancy between
the theory of separable and non-separable Banach spaces since, for example, any separable
infinite-dimensional Banach space has an infinite K-basic sequence for K an arbitrary constant
bigger than 1. Our work [L17] has shown that we can find similar examples using capturing
construction schemes. Our spaces, however, seem to be more interesting than those of [LAT11]
since they can be further analyzed and therefore used to attack some other problems from the

area.

The Thesis is organized as follows. In Chapter 1 we introduce the background definitions
and results necessary for the rest of the Thesis. In particular we mention classical axioms of
Set Theory such as Jensen’s diamond <), and Martin Axiom for w; dense sets, MA,,. We
give a brief introduction of important objects of combinatorics that will be important in future

chapters: Suslin trees, gaps, destructible gaps, and T-gaps. Since we will be concerned with



applications to Functional Analysis we also mention the necessary concepts from the Banach
Space Theory, mainly concepts such as: Schauder basis, basic sequences, biorthogonal Systems
and their relation to the geometry of Banach Spaces: Mazur Intersection Property. We then
introduce the main concept of the Thesis: the Construction Schemes and immediately illustrate
their application to the construction of classical objects, such as Aronzajn trees and Hausdorf
gaps. It’s important to notice that this section requires no extra axioms in ZFC so it is not
possible to generalize this first examples towards the construction of Suslin trees or destructible
gaps without the use of extra axioms. To get such application we introduce the notion of
capturing construction schemes, and different variations on the idea of capturing, and show
that they are incompatible with MA,, .

In Chapter 2 we present all of the results about the consistency of construction schemes

that we know at the moment. We begin by showing the existence of construction schemes in

ZFC.

Theorem 2.1. For any given type (mg,ng, ri)k<w there is a construction scheme F of that

type.

Another framework to build uncountable objects using finite approximations in such a way
that one can control the uncountable substructures was developed by Shelah [She85] using <.
The existence of capturing construction schemes also follows from < (see [Tod17]). We show

that adding Ny Cohen reals implies there are capturing construction schemes.
Theorem 2.2. Adding k > Ny Cohen reals also adds a fully capturing construction scheme.

Thus, capturing construction schemes are added in many finite support iterations. This
means that some of the most common techniques in Set Theory have relevant consequences in
Functional Analysis. We move on to study weaker forms of capturing. We study the Hierarchy of
n-capturing construction schemes show that there is a relation between the m-Knaster Hierarchy

and n-capturing construction schemes.

Theorem 2.3. MA,, (K,,) and n-capturing are independent if n < m and they are incompatible

if n >m. Also MA,, (precaliber X1 ) is independent of capturing.

We also prove equivalent results for fully ﬁ—capturing construction schemes and n—ﬁ—capturing
construction schemes. We finish the Chapter with a summary of all known consistency results
at the moment.

In Chapter 3 we explore applications of capturing construction schemes to the classical
problems of Set Theory. In particular, we construct a Suslin tree and a Hausdorff gap, us-
ing 3-capturing construction schemes, this will serve as illustration of how to use capturing

construction schemes to build uncountable structures.

Theorem 3.1. Assume there is a Construction Scheme that is 3-capturing. Then there is a

Suslin tree.
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Theorem 3.3. Assume there is a 3-capturing construction scheme. Then there is a Hausdorff
(w1,w1)-gap that is a T-gap.

Using partitions to capture we can reduce the level of capturing needed to construct Suslin

trees and T-gaps. We do not know if n-capturing implies n—ﬁ—capturing.

Theorem 3.4. Let w = J,__ P;, with P; infinite, and let P = (P; : i < w). Assume there are

Q—ﬁ—capturing construction schemes, then there is Suslin tree and Hausdorff T-gap.

<w

We finish Chapter 3 by showing that the notion of Hausdorff T-gap is stronger than the
standard notion of a destructible Hausdorff gap. We do this with a forcing iteration that gives

us a model with destructible gaps but no T-gaps.

Theorem 3.5. There is a model of set theory in which there is a destructible Hausdorff (w1, w1)-

gap but with no T-gaps.

In Chapter 4 we apply capturing construction schemes to Banach Spaces. The motivation
for this Chapter are the following Theorems of Lépez-Abadand Todorcevié¢ [LAT11]

Theorem 1.1 (Theorem 4.5 of [LAT11]). For every € > 0 rational, there is a forcing notion
P. which forces a Banach space Y. with an uncountable e-biorthogonal system and such that for

every 0 <7 < 1—;, Y- has no uncountable T-biorthogonal system.

Theorem 1.2 (Theorem 6.4 of [LAT11]). For every constant K > 1 there is a forcing notion
Py which forces a Banach space Vi with an uncountable K -basis yet for every 1 < K' < K,

Vi has no uncountable K'-basic sequences.

One feature of the constructions in this Chapter is that they can be understood without
much of a background in Set Theory. We give first a general overview of the constructions,

then we construct the following Banach spaces of density Nj.

Theorem 4.4. Assume there is a capturing construction scheme F. Then for every e € (0,1)N
Q, there is a Banach space X. with an uncountable e-biorthogonal system but no uncountable

T-biorthogonal system for every 0 <1 < 5.

The notion of an uncountable e-biorthogonal is related to the Mazur Intersection Property,

more concretely we also show:

Theorem 4.4. The Banach Space X. does not have the Mazur Intersection Property, is poly-

hedral and it’s norm depends only on finitely many coordinates (see below for definition).

Theorem 4.5. Assume there is a capturing construction scheme F. Then for every constant
K > 1, there is a Banach space Xk with a K-basis of length wy but no uncountable K'-basic
sequence for every 1 < K' < K.
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1.1 Preliminaries

We follow the standard notations in combinatorics and Set Theory, for more background see
Kunen [Kun80] or Jech [Jec02]. For background in the Banach Space Theory, see Lindenstrauss
& Tzafriri [LT77] or Hajek et al. [HMSVZ08].

We write [w]* for the collection of infinite subsets of w. If a,b C w are infinite sets we say
a is almost contained in b, and write a C* b, provided a \ b is finite. Analogously, we denote
[w1]<¥ for the collection of finite subsets of wy. For bounded subsets A, B C w; we write A < B
if for every a € A and b € B we have a < b. By A C B we mean that A is an initial segment of
B, meaning that A C B and ifa € A, b€ B and b < a then b € A.

Definition 1.4. For an uncountable set X and s, C X for a < y. We say (Sq)a<y forms a

A-system if there exists s C X such that s, Nsg = s for every a < 3 < 7.
We will work with a special kind of A-systems.

Definition 1.5. For X = wy and s, C w1, we say (Sa)a<~y Is an increasing A-system if it is a

A-system and s, < sg for every a < 8 < 7.

The following is a classical result of combinatorics known as the A-system Lemma or

Shanin’s Lemma.

Lemma 1.6. For X uncountable and s, C X finite for a < wy. There is I' C wy uncountable

and s C X such that (s : a € T') forms an increasing A-system.

For the duration of this work we will assume that all A-systems are increasing without
mention.

For A, B C w; finite, there is a unique order-preserving bijection between A and B. We
denote this bijection by o4 p : A — B, and use it to transport structures on A to structures

on B. In particular:

o If f: A— X is a function on A into some set X, we denote ¢4 p(f) : B — X the map

fo 902,13'

o If S C P(A) is a family of subsets of A, we define

pAB(S) ={pan(S):S5 eS8}
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We mention forcing results and forcing axioms throughout this work. It is assumed the
reader is familiar with the classical results and principles of Set Theory. We recall the most
relevant definitions, the reader is refer to [Jec02] for background.

By a forcing notion P we mean a partial order (P, <).
Definition 1.7. Let P be a forcing notion.
1. A set D C P is dense if for every p € P there is ¢ € D such that ¢ < p.

2. Given p,q € P we say p and q are incompatible and write p L ¢ if there is no r» € P such
that r < p,q. Otherwise we say p and q are compatible and write p [ q.

3. Let D be a family of dense sets of P. A set G C P is a D-generic filter, if

(a) for every p,q € G, we have p [ q,
(b) for every r € P and p € G, then p < r implies r € G,
(¢) for every D € D we have DN G # ).

4. We say A C P is an antichain if every two elements in A are incompatible, i.e, for all

p,q € A we have p L q.
5. We say P has the countable chain condition, or P is cce, if every antichain of P is countable.

We are in conditions to define the Martin’s Axiom.

MA : For every ccc forcing notion P and every family D of dense sets of P with |D| < A,
there is a D-generic filter G.

The notation refers to Martin Axiom for A dense sets. Martin’s Axiom is the statement MA
holds for all A < ¢. It is independent of ZFC, as a note MA ) implies A < ¢ therefore it implies
the negation of the continuum hypothesis. We will be mostly interested in MA,, and weaker

versions of this axiom.

Definition 1.8. Let P be a forcing notion. We say that P has precaliber N, if for every
W C P uncountable, we can find Wy C W also uncountable such that for all m < w and all
D0y - -, Pm—1 € Wy there is p € P with p < po,...,Pm—1-

We say P is m-Knaster for m > 2, denoted as K,, if for every W C P uncountable,
we can find Wy € W uncountable such that for all pg,...,pm_1 € Wy there is p € P with

P =Pos-- s Pm—1-

Note first that having precaliber ¥; implies K,,, and K,, implies K,, for n < m. Also, a
forcing notion which is K, or has precaliber ¥; is clearly ccc. Thus, we have the following
implications:

ccce =Ky <= ... <K, «Kpq1 < ... < precaliber ¥y

We can now define the following forcing axioms which are weaker than MA :
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MA(K,,): For every K,, forcing notion P and every family D of dense sets of P with
|D| < A, there is a D-generic filter G.

MA ) (precaliber ¥y): For every forcing notion P with precaliber 8 and every family D of
dense sets of P with |D| < A, there is a D-generic filter G.

The axioms MA(K,,) and MA (precaliber X;) are defined similarly as MA. It is clear that

we have the following implications

MA,,

l

MA)\(KQ) > > MA)\(Km) — MA/\(Km_H) - = MA,\(precaliber Nl)

None of the implications above can be reverse. To see this note that MA,, kills Suslin trees
(see definitions below) yet MA,, (K2) preserves Suslin trees. Therefore, if we start with a model
V' with Suslin trees and we force with a Ko forcing such that MA,, (K2) holds, we obtain a
model V[G] where MA,, (K2) holds but MA,, fails. To see none of the other implications can
be reversed we refer the reader to Barnet [Bar92] where it is shown that if you start with a
model V' then add a Cohen real, and force with a K,, poset that forces MA(K,,), the resulting
model satisfies MA(K,,) and MA,,, (K;,+1) fails. In Chapter 5 we give an alternative prove that
MA )\ (K,,) £MA ) (K;»+1) using consctruction schemes.

The following cardinal numbers are related to the continuum and they play an important

role in combinatorial arguments. We will come back to them in Chapter 5.

Definition 1.9. We say that A C [w]“ has the finite intersection property (fi.p.) if for every
Ag, ..., A, € A their intersection Ag N ... N A, is infinite.

Let A be a family with the f.i.p. and P C w infinite. We say P is a pseudo intersection for
A if for every A € A, we have P C* A.

We say B C w¥ is unbounded if for every h € w* there is f € B such that f £* g.

Finally, let

p = min{|A| : A has the f.i.p and it has no pseudo intersection.}
b = min{|B| : B is unbounded.}

It is easy to see that w; < p < b < c. If we assume MA,,, (K,,,) or MA,, (precaliber ®;) then

w1 < p. Actually there is a close relation between cardinal invariants and some forcing axioms.

1.1.1 Gaps in the quotient algebra P(w)/Fin

Hausdorft’s (wy,w1)-gaps in the quotient algebra P(w)/Fin are important set theoretic tools
that naturally show up in a wide range of applications in set theory and related areas (see,

for example,[DW8T7]). It turns out that there are numerous analogies between (w1, w;)-gaps
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and Aronszajn trees (see definition below for definitions), for example [LTO1]. Suslin trees,
which play an important role in this work, are a very specific kind of Aronszajn trees since
they may admit uncountable branches in wi-preserving forcing extensions of the set-theoretic
universe. Analogously, as it is well known, some (w1,w)-gaps may be filled in w;-preserving
forcing extensions of the universe, so this sort of gaps are sometimes called destructible gaps, or
Suslin gaps. We present this notions here and the proof of the basic results for the convenience
of the reader.

The study of gaps in P(w)/Fin leads to a Ramsey-theoretic characterization of destruc-
tible gaps, which further strengthens the analogy between Suslin trees and destructible gaps.
Furthermore, it points out to a natural variation of the notion of destructible gap, a T-gap, a
notion that we introduce below and we will come back to in Chapter 3.

We recall the definition of gap in [w]“ as well as some well known results.

Definition 1.10. We say (aa,ba)a<w,, With aq, by C w infinite, is a pre-gap if for every a <
B <wi

1. agNby = 0.

2. aq C* ag and b, C* bg.

3. ag N by is finite for every J,~v < wy.

We say that (aq, ba)a<w, 18 & gap if it is a pre-gap and
4. there is no infinite ¢ C w such that

(a) aq C* ¢ for every a < wy.

(b) by N ¢ is finite for every a < w;.

The existence of (wi,ws)-gaps is due to Hausdorff [Hau36]. It is easy to see that every
pre-gap (aa,ba)a<~y for v < wp is not a gap.
The following Ramsey property of gaps is going to be useful in the rest of the Thesis since

it makes constructions of gaps with different properties more intuitive.

Proposition 1.11. A pre-gap (aq,ba)a<w, form an (wi,wi)-gap if and only if for every un-
countable I' C wy there are a < f in T' such that aq Nbg # 0.

Definition 1.12. We say a gap (aa,bq)a<w, is a destructible gap if for every uncountable
I' C wy there are a < B in I such that (aq Nbg) U (ag Nby) = 0.

In [Dow95] a destructible gap is constructed using <, we present a natural construction in
Chapter 3. The next proposition implies that under MA,,, all gaps are indestructible, mean-
ing there are no destructible gaps (see e.g. [TF95]). Thus, we have that the existence of a
destructible gaps is independent of ZFC.



1.1. PRELIMINARIES 9

Proposition 1.13. The following are equivalent:

1. There is an wi-preserving forcing notion that splits (aq, ba)a<w, -

2. The forcing notion defined by p € P = [wi|<¥ iff ao Nbg =0 for all « # 3 in p ordered by

extension has the ccc.

3. For every uncountable ' C wy there are o < 8 in I' such that (aq Nbg) U (ag Nby) = 0.

In the literature, (w1, w1)-gaps with these properties are called ‘destructible gaps’, ‘fillable
gaps’, ‘Souslin gaps’ or ‘S-gaps’, we will refer to them as S-gaps or destructible gaps. This

definition leads us to the following natural strengthening.

Definition 1.14. We say a gap (aa, ba)a<w, is & tower gap or a T-gap if for every uncountable
I' C wy there are a < 3 such that a, C ag and b, C bg.

Theorem 3.5 asserts there is a model with a destructible gap but no T-gaps. In other words,
it is consistent that there are destructible gaps but no T-gaps, therefore the concept of T-gaps
is stronger than just destructible gap. See Chapter 3 for the prove of this fact.

There is another interesting fact, even though T-gaps are destructible by a ccc forcing. They
are not destructible by a K forcing, i.e, a forcing such that for every W C P uncountable, there

is Wy C W uncountable with p [ ¢ for every p,q € Wy.

Proposition 1.15. Let (aq,b5)a<w, be a T-gap, and P a Ky forcing notion. Then P does not
destroy the gap (aa,bg)a<w,- In other words, (aq,bg)a<w, is still a T-gap in V[G], where G is
a generic filter for P.

We give the proofs of this propositions.

Proof of Proposition 1.11. Suppose (aq,ba)a<w, 18 not a gap and let ¢ C w witness this. There
is n < w and uncountable I' C w; such that a, \ ¢ C n and by, Nc C n for all « € I'. We can
also assume that there are s,t C n such that for every a € I' a, Nn = s and b, Nn =t. The
condition a, N by = () implies that s Nt = (.

For every a < 8 in I" we have
aoNbg = (aaNn)N(bgNn)=snNt =10

Suppose now that there is I' C w; uncountable such that a, Nbg = 0 for every a < S in I

Define
c= U Qe
acl’
is clear that a, C* ¢ for every a < wi. We just have to check that ¢ b, is finite for all v < wy.
Let v < wy. Since a, Nb, is finite, if ¢N b, is infinite there must be some § € I' limit in I', v < 9
such that
U aq Mby s infinite
ael’Nd
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but by \ bs is finite and |J,cpns @a Nbs = 0, contradiction.
O

Proof of Proposition 1.15. First we see (3) = (2) = (1). Let P be as in (2). Notice that P
forces (aq, ba)a<w, to split by forcing I' C wy without the property of Proposition 1.11. We see
that P is ccc hence wi-preserving.

Let (pa)a<w, in P. There is uncountable I' C w; such that:
(1) (pa)acr forms a A-system with [p,| = k.
(i) If po = {67 < ... <0y} there is n < w such that age \ 7 C age and the same for bso.
(747) There are s;,t; C n for i =1,...,k such that ase N = s; and bse Nn =1,

Note that s; N¢; = (). Consider {0 }qecr by hypothesis
there are & < 3 in T' such that (ase N bzsf) U (aéf Nbse) = 0.
By (iii) we have (ase Nbss) U (ags Nbsa) N =0, by (i) we have
J J
(ase Nbss) U (ags Nbse) \ n C (age N bég) U (aéf Nbse) =0
J J

and p, Upg € P.
(2) = (3) Let I' be an uncountable subset of wy. Take (po = {a})aer since P has the ccc
there is @ < § in I" such that p, £ pg but this implies (aq Nbg) U (ag Nby) = 0 as we wanted.
(1) = (2) Let Q be a forcing notion wi-preserving that splits (aa, ba)a<w,- By the proof of

Proposition 1.11 for every I'g C w; uncountable we can find I" such that

QIF I’ c T'y uncountable.
Q Ik “for every a < Bin I, (aq Nbg) U (agNby) = 0.”

Applying (2) < (3), which we already proved, Q I+ “P has the ccc”. If P has an uncountable an-
tichain on the ground model it has an uncountable antichain on V@ because Q is wi-preserving.

Thus P is ccc and we finish the proof. O

Proof of Proposition 1.15. Start with a T-gap (aq, ba)a<w, , and a Kg forcing notion P, as above.
Since P is ccc, wy is preserved, therefore (aq,ba)a<w, is @ pre-gap in V[G].
Let I' be a name for an uncountable subset of wy in V[G]. Take W C w; uncountable, and
(pa : @ € W) C P such that
For all a € W, py - a €T (1.1)

Since P is Ky there is Wy such that for every o < 8 in Wy, there is ¢ < pa,ps. Apply the gap
condition from Proposition 1.11 to obtain o < 3 such that a, Nbg # 0. Also, by the T-gap
condition, there are o’ < 8" in Wy such that a, C ag and by C bgr.
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By the way Wy was obtained we can find ¢ < pa,pg and ¢’ < po/, pgr. By equation (1.1) we
have
qll—EIa<Binf‘,aaﬂbg75@

This implies (aq,bg)a<w, is a gap in V[G] since I" arbitrary. Similarly,
¢ IF3 < B inT,ay C ag and by C by
this shows (aa,bg)a<w, is a T-gap in V[G]. O

1.1.2 Trees and other combinatorial objects

One of the most common objects in combinatorics are trees. The reason is that many problems
can be coded as problems on trees. For example, perfect sets can be seen as branches of perfect
trees which has multiple applications in Descriptive Set Theory. This makes the study of trees

a classical part of Set Theory.

Definition 1.16. We say a partially ordered set (7,<) is a tree if for each ¢t € T the set
{s € T : s <t} of predecessors of ¢ is well-ordered by <.

We can then consider the ordered type of {s € T': s < t} and say that ¢ is on the level
a and denote it by Lev(t) = « if the set of its predecessors has well-ordered type o under <.
When we talk about level « of (T, <) we mean T, = {t € T': Lev(t) = a}. We say (T, <) has
height p if po = sup{Lev(¢t) + 1 : ¢ € T'}. For simplicity we will write T" to refer to (T, <).

Example 1.1 (Binary Trees). Consider the collection of finite sequences of 0’s and 1’s, and
denote it by 2<¢. We represent elements of 2<% by letters ¢, s, . .. and t; denotes the i*" element
of t. For a sequence t € 2<% we denote by || the length of ¢, thus t = (¢; : ¢ < [t]). For n < |¢|
we let t [ n = (t; : i < n), notice that t [ n € 2<% for every n < w. If t,s € 2<¥  we say that
s<tif |s|<|t|and t | |s| = s.

It is clear that (2<%, <) as defined above is a tree of height w.

In the same way we can define 2<% for any ordinal o we call this tree the binary tree of
height a.

Definition 1.17. Let T be a tree, and B, A C T. We say B is a branch of T if it is maximal
and linearly ordered. We say A is an antichain if for different ¢, s € A neither ¢ < s nor ¢t > s,

we say that ¢ and s are incompatible and we denote it by ¢ L s.
We are now in condition to define what is an Aronszajn tree and a Suslin tree.

Definition 1.18. We way a tree T' is an Aronszajn tree if T has height wq, it has countable
levels and it doesn’t have uncountable branches.
We say a tree T is a Suslin tree if T has height wi, and it has neither uncountable branches

nor uncountable antichains.
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A classical result of Set Theory is that there is an Aronszajn tree in ZFC, however the
existence of a Suslin tree is independent of ZFC. To see this, let (T, <) is a Suslin tree and
consider the forcing notion P = (7, >) then we can force an uncountable branch to T". Since T' is
a Suslin tree implies P is ccc, this means that MA,, implies there are no Suslin trees. Saharon
Shelah [She84] showed that adding one Cohen real forces a Suslin tree, Stevo Todorcéevié showed
that modifying a coherent map by a Cohen real results in a Suslin tree. We provide a new
construction of a Suslin tree in Chapter 3.

To define Jensen’s diamond principle we need some definitions

Definition 1.19. We say C C w; is a club if it is closed and unbounded in wy.
We say S C wy is stationary if for every club C, we have C'N S # ().

Jensen’s diamond principle:
¢ There is a sequence (S, : @ < wy) such that

1. For every a < wi, So C a.

2. For every I' C w; the set {a < w; : T'Na = S,} is stationary.
we call the sequence (S, : @ < wi) a {-sequence.

The {$-sequence (S, : @ < wi) contains all subsets of w therefore ¢ implies the continuum
hypothesis. Recall MA,, (precaliber X;) implies w1 < p < ¢ therefore MA,,, (precaliber X;) is
incompatible with . It is well known that {6 implies the existence of a Suslin tree (see for
example [Jec02] or Chapter 3) but the other direction does not hold. For example, adding a
Cohen real to a model with wy < ¢ will force a model with a Suslin tree but CH is false therefore

¢ is false as well.

1.1.3 Banach spaces

We give some preliminaries of the theory of Banach spaces. We follow standard notation (see,
for example, [LT77] and [HMSVZ08])).

Definition 1.20. A Banach space (X,| -||) is a complete normed space in R, we refer to it as
X. The unit ball By is the collection of z € X such that ||z|| < 1.
The dual space X*, is the Banach space form by the maps z* : X — R which are linear and

bounded equip with the supremum norm ||z*|| = sup{|z*(z)| : * € Bx}.
We recall some other notions of Banach space theory relevant to this work.

Definition 1.21. Let X be a Banach space and (Y4, Y )a<w, a sequence in X x X*. For € > 0,
we say that (Ya, Y )a<w, forms an e-biorthogonal system if y*(yo) = 1 for every a < wq, and

lys(yg)| < e for every a # 5. If € = 0 we say (Ya)a<w, forms a biorthogonal system.
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A Banach space X have the Mazur intersection property (MIP) if every closed convex subset
of X is the intersection of closed balls. The following result relates the above algebraic definition

with the more geometric Mazur intersection property.
Theorem 1.22 ([SM9I7]). Let X be a Banach space.

1. If (Yar Y2)a<r forms a biorthogonal system with {y’}a<x dense in X* then X admits an

equivalent norm with the MIP.

2. If X is nonseparable and has an equivalent norm with the MIP, then X has an uncountable

g-biorthogonal system for some 0 < e < 1.

One of the most important tools of Linear Algebra are Hamel basis of vector spaces. It is

natural then to look for a Banach space equivalent to Hamel Basis.

Definition 1.23. Let X be a Banach Space, and let (z,)n<, be a sequence in X. We say
(Tn)n<w is a Schauder basis of X if for every x € X there is a unique sequence of scalars

(@n)n<w such that > anx, is absolutely convergent and
r = Z Gn T,

We say (2 )n<w is a basic sequence, if it is a Schauder basis of span(z, : n < w).
The following result is useful to check if a sequence is a Schauder basis.

Proposition 1.24. Let X be a Banach space and (zy,)n<w a sequence of nonzero vectors on X .

Then (Tpn)n<w 18 a Schauder sequence if and only if the following conditions hold:
1. The linear span of (zy)n<w is dense on X.

2. There is a constant K such that, for every sequence of scalars (a;)i<w, and n < m

n m
E ;T g ;T
=0 i=0

<K

We call the minimum constant K that makes 2 above hold, the basis constant.

Note that a sequence (x)n<, of nonzero vectors of X is a basic sequence if and only if

condition 2 above holds.

Theorem 1.25 (Theorem 1.a.5 of [LT17]). Every infinite dimensional Banach space has a
basic sequence. Furthermore, given € > 0 we can take the basic sequence to have basic constant
(1+¢).

First we prove the following Lemma.
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Lemma 1.26. Let X be an infinite dimensional Banach space and Z C X is a finite dimensional

subspace. For every e > 0 there is x € X with ||| = 1 such that
Iyl < (1 +e)lly + Az|

for every y € Z and every X € R.

Proof. Let Z C X be finite dimensional, and 0 < € < 1 be given. Apply Heine-Borel to conclude
that,
Sz ={y € Z:|y|| =1} is totally bounded.

Thus, we can find a finite sequence (y;)i<n in Sz such that for every y € Sz there is ip < n
with [|ly — yil| <e/2.

Take y* on X* such that ||y/|| =1 and y/(y;) = 1. Since X is infinite dimensional there is
x € X such that ||z|| =1 and y;(x) = 0 for all i < n. We check that this = works.

Let y € Z and A € R be given. Without loss of generality we can assume that |y|| = 1.
There is ¢ < n such that

I3
lys — ol < 5

Then we have
ly + Az|| > |y (y + Az)| > |y ()]

using the linearity of y;" we have,

&
L= ly; (ya)| < lyi |+ lyi (v — v)| < lyi (y)| + 3

Therefore

ly; (y)] > 1~

and the Lemma follows. O

Proof of Theorem 1.25. Let € > 0 be given. Take a sequence 0 < €, < 1 such that

[[a+e)<1+e

n<w

Take some 1 € X with ||z1]| = 1, and let Z; be the span of z;. Now use the Lemma above
to find zo € X with ||z2]| = 1 such that

[yl < (1 +e)lly + Aza]

for every y € Z1 and every A € R. Denote the span of x1 and xo by Zs.

We can continue to use the Lemma to find a sequence (), of normalized vectors of X,
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Zy, = span{z1,...,xy} such that
Iyl < (1 +en)lly + Aznia]

for every y € Z,, and every A € R.

Let Y = span{xi,...,2Zn,...}. Then (z,), forms a Schauder basis of ¥ of basic constant
(1+¢). To see this, let a1,...,ay,... be a sequence of scalars, and n < m be given. Then
n m m m
Z a;zi|| < H (1+¢&) Z a;z;|| < (1+¢) Z a;T;
i=1 i=n+1 i=1 i=1

O]

If the Banach space X on which we are working is not separable it cannot have a Schauder
sequence. Also, basic sequences of X' will only give us information about separable subspaces
of X. Since the nonseparable subspaces of X can have behavior that differs from separable
subspaces, we need to strengthen the definition to work with uncountable sequences. In this
work we are only concerned with Banach spaces of density ;. This is because the study of
nonsparable Banach spaces is much different that the separable counterpart, and already for

spaces of density N; we can see a big difference between the separable and nonseparable theories.

Definition 1.27. We say that a sequence (Yq)a<w, in a Banach space X is an uncountable
Schauder basis of constant K for K > 1, if the two conditions hold:

1. X =span{y, : @ < w1}, and
2. For every A\ < w; and every sequence of reals (aq)a<w, we have

Z AaYa Z AaYa

a<A a<wi

<K

We say that (ya)a<w, 18 an uncountable K -basic sequence if condition 2 above holds. Equiv-

alently, (Yo )a<w, 18 @ Schauder basis of constant K on span{yq : o < wi }.

The first thing we want is a Theorem that says every Banach space of density N1 has an
uncountable (1 + €)-basic sequence unfortunately that is no possible, we cannot even guarantee
that a Banach space of density N; has an uncountable biorthogonal system. However we have

the following result of 2006 from Todorcevic,

Theorem 1.28 (Todorcevié¢ [Tod06]). Assume MA,, and PID. Every Banach space of density
N1 has a quotient with an uncoutable Schauder basis of constant K = 1. In particular every

Banach space of density X1 has an uncountable biorthogonal system.

Recall that PID is the P-ideal dichotomy stating that for any P-ideal Z of countable subsets

of some index set 5, either S can be partitioned into countably many subsets orthogonal to Z
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or there is an uncountable subset of S all of whose countable subsets belong to Z. For more
about this sort of dichotomies the reader is referred to [Tod11].

In Chapter 4 we will show that positive results in this direction require some extra axioms.
We do this by constructing Banach spaces of density ¥; that do not have uncountable biorthog-
onal systems, even if they have some uncountable e-biorthogonal system. We also construct
other spaces with uncountable Schauder basis of constant K > 1 but no uncountable L-basic
sequence for 1 < L < K. This results are done with a capturing construction scheme. Thus we

get the following results:

Corollary 1.29. Assume MA,, and PID.

There are no capturing construction schemes.

See below for the definition of a capturing construction scheme.
We will see in chapter 3 that there is a Suslin tree provided there is a 3-capturing construction

scheme, therefore we get:

Corollary 1.30. Assume MA,,, .

There are no 3-capturing construction schemes.

Some Technical comments: We introduce here the techniques that will appear in Chapter
4 without mention. Let coo(wy) be the vector space of functions x : w; — R with finite support.

Where the support of x is defined by

supp(z) = {a < w; : z(a) # 0}

For v < wy we let

0 a#vy
1 a=v

ey(a) =

be the unit basis vector of cyg(w).
If F is a finite subset of w; and h : F' — R, we consider the extension of h in cop(w1) to be
zero outside of F' and still refer to it as h without risk of confusion.

If h,z € coo(w1) we denote

(hyz) = h(a)z(a) (1.2)

a<wi

which is well-defined because h and x have finite support.
In order to make counting arguments we work most of the time on cgp(w1, Q), meaning we

consider functions in cgo(wy) that only take values in Q.

1.2 Construction schemes

In this section, we introduce the notion of a construction scheme.
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Capturing construction schemes were introduced in Todorc¢evié¢ [Tod17], where they were
used to construct compact spaces and non-separable normed spaces with considerable control
on their non-separable structure. In section 5 of [Tod17] a general framework to construct
Banach spaces using construction schemes is introduced. This framework, together with the
forcing amalgamations of [LAT11], constitute the technology behind the proofs of Theorem 4.4
and Theorem 4.5.

The key feature of this scheme is that it provides a family F of finite subsets of w; which
allow us to construct uncountable structures such us trees, gaps or norming sets. The way this
works is the following; we use the elements F' of F to “approximate” an uncountable structure
in w; and use the canonical decomposition (see below) for the recursive construction, for this we
want all approximations of the same rank k to be “isomorphic”. The recursive step is done by
amalgamating many isomorphic structures of lower rank. These amalgamations will determine
the behavior of uncountable substructures of the limit structure via an appropriate property of
capturing of the construction scheme.

We explore this ideas in greater detail.

Definition 1.31. Let (mg)k<w, (nk)1<k<w and (rg)1<k<w be sequences of natural numbers such
that mg = 1, mi_1 > 7 for all £ > 0, np > 2 and for every r < w there are infinitely many k’s

with ri, = r. If for every k£ > 0 we have
mp = nk(mk_l — ’I”k) + Tk

we say that (mk,nk,rk)k<w forms a type.

Definition 1.32. We say that F is a construction scheme of type (my, ng, 1) g<w it F C [w1]<¥,

a family of finite subsets of w1, we can partition 7 = | J, ., Fr and for every F' € F there is
R(F) C F, such that

1. For every A C wy finite, there is F' € F such that A C F.
2. VF € Fi, |F| = my and |R(F)| = 7.
3. Forall FEF € F,, ENFC F,E.

4. VF € Fi, there are unique Fy, ..., Fj,_1 € Fp_1 with

F:UE

<n

Furthermore n = ny and (F})i<p, forms an increasing A-system with root R(F), i.e.,

R(F) < Fo\R(F) <...< Fy, -1\ R(F)

We call the sequence (Fj)i<p, of (4) the canonical decomposition of F.
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Fy

I s
R(F)
F
I

I e B s
R(F)
F
Fy

s s B
R(F)
F

Figure 1.1: Canonical decomposition of F' into Fy, F, and Fy with root R(F).

It is implicitly proved in [Tod17] that for any type (myg,nk, 7k)k<w there is a construction
scheme with that type.
To avoid confusion we will use my, n; and r; as above and we will omit reference to the type

of a construction scheme. For F' € F and F = F; the canonical decomposition of F'. We

<Nk
simplify the notation and write ¢; : Fy — F; for the unique order-preserving bijection ¢ g, r;.
Analogously, if f is a function on Fjy we can define the function ¢;(f) in F; by v +— f (gpi_l('y)).

The following lemma tells us more about the structure of a construction scheme
Lemma 1.33. For F € Fi, E € F;, withl < k we have ENF C FE.

Proof. We prove the lemma by induction on k and [. If [ = k the result follows by the properties
of F. It’s enough to show that: if it holds for [ < k — 1, it holds for [ and k as well. Let F as
above and let ' =J,_,,
apply our hypothesis and E N F; C E for every i < ng. If EN(F\ R(F)) = 0 then the result
follows, otherwise let ¢ < nj be minimal such that EN (F; \ R(F)) # 0 then ENF = EN F,.
Because if not, there is i < j < ng4q with ENF; £ E. Thus we have ENF = ENF; C E and
the result follows. 0

F; be its canonical decomposition. Since the F;’s are in Fj_1 we can

Corollary 1.34. For F' € Fi, E € F; and F = Ui<nk F; the canonical decomposition of F. If

E C F andl < k then there is some i < ng with E C F;. In particular, if | = k — 1 we have
E=F,.

Corollary 1.35. Let E, F € Fi, thenpp p(F | E)=F | F. Where F | F={L e F:L C F}.

Lemma 1.36. For F' € F,, E € F; and E C F (in particular | < k). For every p € E there
is a copy E* of E in F such that

1. B*N(p+1)=ENn(p+1).
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2. E*\ p is an interval of F with u € E*.

Proof. We prove the lemma by induction on k and [. The result follows for [ = k. Suppose the
result hold for [ and k¥ — 1 and [ < k. Take F' = J,_,,,
By Corollary 1.34 there is ¢ < nj such that E C F;. By the induction hypothesis there is E**
a copy of E in F; such that the conclusion holds. If u ¢ R(F) then E* = E** works.
Otherwise, let E* = ¢, g, (E**) by Corollary 1.35, E* is a copy of E and E* \ p is an
interval of Fy. Since p € R(E) then (1) holds, and (2) holds because Fy is an interval of F'. [

F;, the canonical decomposition of F'.

At this point, the reader is probably expecting to see a proof that construction schemes
exists. This expectation is warranted, but we will not do it in this Chapter. Instead, we
postpone the proof of existence to Chapter 2 and dedicate the next section to illustrate why
we are interested in construction schemes. We invite the reader to see Theorem 2.1 for a proof

that construction schemes of any reasonable type exists in ZFC.

1.2.1 First Applications

Let us see now how the construction scheme F can be used to recursively construct classical
combinatorial structures in a natural and intuitive way. We start with a Hausdorff gap in w®.
We have already seen gaps in [w]“. Turns out every (wi,w)-gap in w® can be transformed into
an (w1, wy)-gap of [w]¥. The reason why we choose this example as a first application is because

it illustrates how to apply construction schemes.

Example 1.2 (Hausdorff gap). Fix a construction scheme F.

Our aim is to construct a pre-gap (G, ba)a<w, With the property of Proposition 1.11. We
do this by constructing an increasing sequence (N)x<w, and approximations (al, bl : o € F),
for all F' € Fy, such that

(1) for every F,E € Fj, and a € F and 8 € E such that § = ¢ppp(«) where g is the
increasing bijection from F' onto E. Then we have ag = opp(al), and bg = orp(bl)

(ii) for every F € Fr and o € F, al,bE C Ny,
(ii1) For every | < k, E € F, F € Fi, with E C F, and «, 8 € E, we have:
(a) af NNy =a¥, and b N N; = bE,

(b) an \ ag C Ny, and b, \ bg C Nj, and
(¢) agNbg C Nj.
Let us proceed with the construction of (aZ, bg ta € F) and F € Fj, with conditions (7)

to (iii). Start with Ny = 2. Take F' € Fy, we have F' = {a} for some a < w;. Let af = {0}
and bf = {1}.
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Now suppose we have (aZ,b” : o € F) for all E € Fj, | < k, satisfying (i) to (iii). Take
F € Fj and let F =,
(ali bEi : o € F;) defined.
Let (P;)i<n,, such that Py > N1 + 11, and Pj 1 — P; > my, for all j < ny —1. And let
@ < w such that Q > P; + my, for j = ny, — 1. Take Ni = Q + my..
Enumerate R(F') = {ap < ... < ap,—1}, then

F; be the canonical decomposition of F. Since F; € Fp_1 we have

al, =al U{Ny_1,..., Ny_1 + i}
bh = u{Q,...,Q +1}
Note that condition (i) implies af? = agf and b = bgf for any j < ny.
Enumerate Fy \ R(F') = {7, < ... < Ymy—1}, then
CLF, :aﬁ}) U{Nkfl,...,Nkfl + 7 — 1}U{P(),...,P0+i}
ol =bl0U{Q,...,Q +i}

Now pick 0 < j < ny and let 6; = ¢;(7;). Recall p; is the increasing bijection on Fy onto
Fj, let

af = alT N1, N+ — 1} U{P;, ..., Py +i}
b =65 U{Q,...,Q + mp — 1} U J{R,... . P +i}

I<j

It is clear from the construction that (aZ,bE : o € F) satisfies conditions (i) to (i7).

o) ro
Now let

w=Uet =k
FeF FeF
aeF a€EF

it is clear that (aq,ba)a<w, 18 & pre-gap, by conditions (i)—(7i7). To see it is a gap. Let (§n)n<w
be an increasing sequence of ordinals and sup,, &, < & < w;. Pick F € F with &y, & € E. Since
E is finite there is £y ¢ E. We know there is F' € Fj, with E C F and £y € F. Furthermore,
pick F such that k < w is the first £ < w with this property, i.e, if F' € F; and | < w, then
either B¢ For &y ¢ F. Let ' =J,,,
i < j < ng such that {x € F; and { € Fj, this is where we used that £ < w was the first
that EU{¢} C F. Let @ = £y and B = &, then P; € (af N bg) therefore a, Nbg # 0. By

Proposition 1.11, (aq, ba)a<w, 1S an (wi, wi)-gap. [ |

F; be the canonical decomposition of F'. There are

Note that the conditions (i)—(iii) are very intuitive if you want to approximate a pre-gap.
We turn our attention now to Aronsajn trees.

We want to use a construction scheme to build an Aronsajn tree in a natural way. The idea

<wi

is to construct a tree T' C w<*!, such that every branch of T is one-to-one, therefore 1" does
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not have uncountable branches. To do this, we construct a map p : [wi]?> — w, such that for

every a < wi, the map p, : @ — w defined by p, (&) = p(€, ) is one-to-one and

for every a < 8, {{ < vz pa(§) # pp(€)} is finite. (1.3)

a map with this property is called a coherent map. Given a Coherent map (p, : @ < wq) as

before we let

T, = {a cw: {{<a:0(&) # pa(§)} is finite and o is one—to—one}
T U T (1.4)

a<wi

The tree T has the induced order by extension from w<“!. Therefore, if we construct a coherent

map (pq : @ < wi) we can construct an Aronsajn tree.

Example 1.3 (Coherent Map). We want to approximate (p, : @ — w : o < wy) such that p,
is one-to-one, and the condition (1.3) holds.

Fix a construction scheme F, we construct (Nj)<,, increasing, and (pf : (F Na) — Ny :
a € F) for every F' € Fj, such that

(t) for F,E € F, a € F, and € E with 8 = pr g(a), we have pg = pre(ph),

(ii) pE is one-to-one.

(zit) for every | < k, E € F, F € Fi, with E C F, and a € E, we have:

(a) P& | B =pg,
(b) for € € (FNa), feF, with a <p, ifpg(ﬁ)#pg(ﬁ) then £ € E.

Note that part (b) of (i), will imply property 1.3 and condition (éi) will imply p,, is one-to-one,
conditions (i) and (ii7)—(a) make sure that p, will be well defined.
Suppose we have (p% : (ENa) — N;: F € F) with [ < k. Take F € Fj,, and F =

be the canonical decomposition of F'.

F;

i<np

For o € Fy let pfo = pF.
Now enumerate F' = {y < 71 < ...,Ym,—1}, Pick 5 € F; \ R(F') for some j > 0, for
e (Fj ﬂ’yj) define
F.
pri(§) EEF;

Pl (&) =
Net+o €¢Fand€=7,

Note that pZ is well defined and conditions (i)—(iii) hold.
For every £ < a < wq let F € F with o, & € F, define

pa(g) = 105(5)



22 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

note that this is well defined by (7i7).
Also, p, : @ — w is one-to-one, otherwise there are §y < &1 < a, and F' € F with &y, &1, a € F
and p% (&) = pE (&1) which contradicts (i4i) above. To see (p, : a < wy) has property (1.3), let

a < ff < w; and suppose we have and increasing sequence & < £ < ... < « such that

palEn) # p3(&n) for every n < w. (15)

Take F € F with &, a,8 € E. Since E is finite there is N < w such that £y ¢ E. Pick
F € Fi, such that E C F, and £y € F. Furthermore, we take F' so that k is the first with this
property. Let F' =
B € Fj, for some 7 < j < j* < ng. By the construction we have

F; be the canonical decomposition of F'. Then {y € F;, o € F}, and

i<np

pa (En) = s (En)

This contradicts (1.5) therefore (1.3) holds and (p, : @ < w1) is as we wanted.
Let T C w<“! be defined as in (1.4), then T is an Aronsajn tree. n

No doubt the reader would have noted that our construction of pZ is the minimum work
one would have to do to construct a one-to-one function with property (1.3).

We hope this examples motivate the reader to continue the study of construction schemes.
In the next section we study a property that makes construction schemes all the more useful,

allowing for constructions beyond ZFC.

1.2.2 Capturing

As we have seen already, construction schemes are useful tools for buiding uncountable struc-
tures. However, in order to control the behavior of the family of uncountable subsets of the
structure under construction we require an extra property of the construction scheme. In this
section we introduce the concept of a capturing construction scheme of Todorcevic [Tod17].
They form the main tool behind the constructions of Lopez & Todorcevic [LT17] and Lopez [L17]
which we present latter in this Thesis.

Given a construction scheme F of any type. The idea is that for every uncountable A-
system, we can find F' € F such that the canonical decomposition of F' witnesses a finite part

of the A-System. More precisely,

Definition 1.37. Let F be a construction scheme. We say that F is n-capturing if for every
uncountable A-system (s¢)e<., of finite subsets of wy with root s there are &y < ... < §,—1 < wi,

and F' € F with canonical decomposition F' = | F;, such that

1<np
s C R(F)
for every i <mn, s¢ \s C F;\ R(F),

for every i <mn, @;i(sg,) = s¢,-
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We say that F is capturing if F is n-capturing for every n < w.

Remark 1.1. Note that a construction scheme F which is n-capturing must have type (mg, ng, %) k<w
with n, > n for infinitely many k’s. This should be contrasted with previous methods to con-
struct uncountable objects via amalgamations of finite substructures (see [Vel84] or [She85])
where only two amalgamations were considered. This is relevant because it is consistent to
have n-capturing construction schemes but no (n+ 1)-capturing construction schemes, see The-

orem 2.3.

Remark 1.2. Suppose F is a 2-capturing construction scheme of type (my, 2, 7 )g<w, in other
words ng = 2 for every k < w. It is easy to see that F is an (w,1)-morass in the sense
of Veleman [Vel84], this is clear with his (equivalent) definition of expanded simplified (w,1)-
morass. since morasses do not have an equivalent definition of capturing, capturing construction
schemes generalize morasses in a strong sense

The use of (k,1)-morasses for regular x is well known in Set Theory. This suggest a hy-
pothetical generalization of capturing construction schemes to higher cardinals would have

interesting consequence in Set Theory.

We will see later in Chapter 3 that 3-capturing is enough to construct interesting combina-

torial objects. For now we have the following example.

Example 1.4. Suppose F is 3-capturing. Consider the forcing P of all P finite subsets of wy
such that for every & < & < & in P, F does not 3-captures {{5,} < 3}.

The ordering P < @ in P means Q C P.

We check that P is ccc. Fix (P, : a < wp) C P. We can assume, by going to a subsequence,
it is a A-System. We apply 3-capturing and get ap < a1 < ap and F' € F capturing (P,, : i =
0,1,2). We take P = P,, U P,, and we have P < P, , P,, and P € P. Therefore P is ccc.

Now let av < wy, consider 2, ={P € P: P\ a # 0}.

Claim 1.38. For every a < wi, Y, is dense.

Proof. Let P € P, and a < wy be given. If P\ a # () we are done. Otherwise, let E € F, such
that P U {a} € E. Now take F' € Fj such that E C F and 7, = 0. This implies R(F') = (.

IfF = U,
1 < j < ng, then F; > . Take

F; is the canonical decomposition of F. There is ¢ < ng with £ C F;. Let

Q=PrU @Fi,Fj(P)

Then @ € P, because F does not capture any three elements of P, therefore it does not captures
any three elements of ¢p, r,(P). Finally, if some F'* € Fy captures {{fl} 11 < 3} where & € P
and & € ¢F, F;(P), then F* N Fj is not an initial segment of F* (we assume here that £ < k
the other case is analogous). This contradicts Lemma 1.33. Therefore @Q € P and Q < P. It is
clear that Q € %, because ¢r, r,(P) C Q \ a. O
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Let D ={%, : a <wi}. Apply MA,, to find G, a D-generic filter. Let

r=_Jr

PeG

Then I' is uncountable and F does not 3-captures {{f} €€ F}. Indeed, suppose there are
& <& <& in I and F € F 3-capturing the corresponding A-System. There is P € G with
£0,€1,& € P, but then P is 3-captured by F' which contradicts the fact that P € P. [

The previous example has as a consequence,

Corollary 1.30. Assume MA,, .

There are no 3-capturing construction schemes.

We will see other proofs of this result in latter Chapters. It is clear that n-capturing implies

m-capturing for m < n. Thus, we have the following hierarchy:
2-capturing <= ... <= n-capturing <= (n + 1)-capturing <= ... <= capturing

We will show in Chapter 5 that none of the implications above can be reversed. There is a
generalization of capturing that proves useful in some examples of Todorcevic [Tod17]. We

present it here for completeness.

Definition 1.39. Let F be a construction scheme. We say that F is fully capturing if for every
uncountable A-system (s¢)e<., of finite subsets of wy with root s, and every k* < w there are
F € Fj with k > k*, canonical decomposition F' = [
that

F;, and 50 < ... < fnk—l < wq, such

<np

s C R(F)
for every i < mny, sg \sCF;\ R(F),

for every i < ny, @i(sg,) = s¢,-

Definition 1.40. Let w = (J,., Py be a partition of w into infinite components and let P =
(P : £ < w). Suppose (my,nk,rx) forms a type such that for every ¢ < w, and every r < w

there are infinitely many k’s in P, with rp = r. Then we say (my, ng, 7 ) forms a ﬁ—type.

Definition 1.41. Let F be a construction scheme with type (mg,ng, 7%)x, and 2 > n. We
say F is n—ﬁ—captum’ng if (mg,ng,ri)r forms a ﬁ—type, and for every uncountable A-system
(S¢)e<w, of finite subsets of wy with root s, and every ¢ < w, there are {§y < ... < &1 < w1,
k € Py and F € Fj, with canonical decomposition F' = | F;, such that

<ng
s C R(F)
for every i <mn, s¢ \s C F;\ R(F),

for every i <mn, @;i(sg,) = s¢;-
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We say F is ﬁ—captum’ng if Fis n—ﬁ—capturing for every n < w.

What makes this version interesting is that it allows for different amalgamations. For
example, the existence of a Q—ﬁ-capturing construction scheme implies there are Suslin trees

and T-gaps. We can also define P- fully capturing in the obvious manner.
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Chapter 2

Consistency of Capturing

Construction Schemes

This Chapter is dedicated to prove results about the existence of capturing construction schemes
and to explore the relation between the different forms of capturing. Our main goal for this
Chapter is to show that construction schemes exists in ZFC and that capturing construction
schemes are consistent with ZFC. We do this on Section 2.1 and Section 2.2 respectively. The
rest of the Chapter is dedicated to study the relation between capturing and the weaker forms
of capturing: n-capturing, this is relevant because the combinatorial consequences of capturing
only require 3-capturing, see Chapter 3. Yet applications to Banach spaces seems to demand
capturing, or ﬁ—capturing, see Chapter 4.

The first consistency result about construction schemes can be found in Todorc¢evi¢ [Tod17],
where < is used to show existence of fully capturing construction schemes. Implicit in the proof
of Theorem 2.3 of [Tod17] is the result that construction schemes exists in ZFC.

We dedicate Section 2.1 to the proof of the following Theorem which we consider of inde-

pendent interest (see definitions below).

Theorem 2.1. For any given type (mg, ng, Tk )k<w there is a construction scheme F of that

type.

We present the proof of existence of construction schemes on ZFC first because construction
schemes are useful in providing a framework to build classical combinatorial structures in an
intuitive way. The reader will also benefit by reading the proof of construction schemes in ZFC
as the technique is analogous to the argument adding w; Cohen Reals.

Section 2.2 of this Chapter is dedicated to the proof of the consistency of capturing con-
struction schemes. We present a result from Kalajdzievski and Lopez [KL17], adding w; Cohen
reals also adds fully capturing construction schemes. We already know by Corollary 1.30 that
capturing construction schemes cannot be shown to exists in ZFC alone, so it is necessary to

assume extra axioms or use forcing to prove the existence of capturing construction schemes.

27



28 CHAPTER 2. CONSISTENCY OF CAPTURING CONSTRUCTION SCHEMES

Theorem 2.2. Adding k > Ny Cohen reals also adds a fully capturing construction scheme.

In Section 2.3 we study the relation between capturing and n-capturing. We provide a
detailed analysis of the consistency of n-capturing construction schemes. We conclude that it
is consistent to have n-capturing constrution schemes, but no (n + 1)-capturing. Furthermore,

we show that n-capturing implies MA,,, (K,,+1) fails.

Theorem 2.3. MA,, (K,,) and n-capturing are independent if n < m and they are incompatible

if n > m. Also MA,, (precaliber X1 ) is independent of capturing.

On Section 2.4 we extend the previous results to other forms of capturing, such as full
ﬁ—capturing, and n—ﬁ—capturing.

We finish the Chapter with a summary, Section 2.5, of set theoretic axioms that are consis-
tent or inconsistent with the existence of a capturing construction scheme. Some of this results
have already been proved in the previous sections but we find it useful to include a summary

of consistency results here.

2.1 Construction Schemes on ZFC

The result of this section is implicit in the proof of Todorcevic [Tod17]. Before going into the

prove let us recall what a construction scheme is:

Definition 2.4. Let (mg)k<w, (Nk)1<k<w and (rx)1<k<w be sequences of natural numbers such
that mg = 1, mg_1 > 7 for all £ > 0, np > 2 and for every r < w there are infinitely many k’s

with ri, = r. If for every k£ > 0 we have
mp = nk(mk_l — ’I”k) + Tk

we say that (mg, ng, rp)r<w forms a type.

Definition 2.5. We say that F is a construction scheme of type (my, ng, ri) k< if F C [wi]<¥

a family of finite subsets of w1, we can partition F = J, ., Fx and for every F' € F there is
R(F) C F, such that

1. For every A C wy finite, there is F' € F such that A C F.
2. VF € Fy, |F| = my and |R(F)| = ry.
3. Forall F\E € F,, ENFCF,E.

4. VF € Fi, there are unique Fy, ..., F,_1 € Fr_1 with

F=JF

<n
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Furthermore n = ny and (F})i<pn, forms an increasing A-system with root R(F), i.e.,

R(F) < Fo\R(F) < ... < Fp_1\ R(F)

We are now in conditions to state the Theorem.
Theorem 2.1. Let (my, nk, Tk ) k<o be a type, there is a construction scheme F of type (M, N, Tk ) k<w

Proof. Let a type (mg, ng, i) k<w be given, we fix this type for the rest of the proof. The idea
of the proof is to define a construction scheme on F? on 3, by induction on < wy limit.

We start by showing there is F* which is a construction scheme in w, i.e, F* is a family
of finite subsets of w such that for every A C w finite, there is F' € F* with A C F, and also
conditions (2)—(4) from the definition of a construction scheme hold.

We want {0, 1,...,m,—1} € F. With this in mind we define first collections F(k, 1) C 2™
for every k < w, ¢ < k. Start with

F(1,0) = J {i}

<mi

F(1,1) :{{0, 1,...,my — 1}}

we must have r; = 0 therefore condition (4) holds by decomposing {0, ...,m1} into singletons.
Let k£ > 1, and suppose we have constructed F(I,4), for all [ < k, and ¢ < my, such that

conditions (2)—(4) of a construction scheme hold. For i < nj define
F,={0,....rx — L,rg +i(mg—1 — 7)), .,rpe + (0 + 1)(mp_1 — 1) }

and consider g; : Fy — F; the order preserving bijection between Fyy and Fj;, note that both Fj
and F; have the same size, my_1, and ¢ is the identity on Fy = {0,1,...,my_1}. Then,

Fk.j)= | ¢ (F(k - 1,j)> for all j < k

<N

F(k, k) = { {0,1,...,mk—1}}

Note that F(k,k — 1) = {F; : ¢ < ng}. We check that conditions (2)—(4) hold.

Let FF = {0,1,...,my — 1}, define R(F) = {0,1,...,7, — 1} and let F' = | F; be the
canonical decomposition of F'. By the way F(k, k—1) has been defined, this is the only possible
decomposition for F'. Thus (4) works at level k. It is also clear by the definition of F(k, k) and
F(k,k — 1), that (3) holds at levels k and k — 1. Now let Ey, B € F(k,j) with j < k — 1, by
definition, there are Cy,Cy € F(k — 1,j), and ag, a1 < ng, such that E; = ¢, (C;), 7 =0, 1.
If ap # a1 then (3) holds because Ey N E; C R(F) and then Ey N Ey = ¢q,(Co N C1) which is
an initial segment of Ey becuase Cy N C is an initial segment of Cj, and the same for Cy. If
ap = a1 then (3) holds for Fy, E1 because it holds for Cy, C;.

i<np
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Now for every E € F(k, j) for j < k we have E = ¢,(C) for some a < n; and C € F(k—1,j)
and since (2) holds for C' it holds for E. Also C' has a canonical decomposition C' = |, <n,; Ci
with C; € F(k — 1,7 — 1). Since ¢, is a bijection, we have F = | E; with E; = ¢,(C;) €
F(k,j —1). We want to see this decomposition is unique. Note that E C F, and by definition

1<nj

any decomposition of E will have to be contained in F,. If we have two different decompositions
of E we can pull them via ¢, into different decompositions of C' which is a contradition. Thus
(2)—(4) holds in F(k,i), i < k.

We are now in conditions to define F“,

Fe=|JF(k,i)

k>i
F=F
i<w
By the definition of the F(k,7)’s is clear that F* satisfies conditions (2)—(4) of a construction
scheme. To check (1), let A C w and take k big enough such that A C {0,1,...,my} € F“.
This finish the first step of the induction.
Let § < wy limit, and suppose we have constructed F¥ for every 5 < § limit, such that

@'g For every v < ( limit, F7 is a construction scheme on ~ of type (mg,ng, 7x)k<w and
FY C Fh.

&f For every finite A C 8 and o < 8 we can find F' € F with canonical decomposition
F =\J, F;, such that A C Fy, R(F) = Fo Na.

Note that F“ as defined above satisfies XY, indeed let A C w and o < w, there is £ < w big
enough such that A C {0,1,...,my} € F¥, and r; = «, here it is used that 7, = « for infinitely
many values of k. If § is a limit of limits we can find §,, < J increasing with § = sup,, d,,, such
that F° satisfies &g" and &‘f", then

A= 7"
n<w

F=rA
k<w

satisfies X and .

The only case left is when ¢ is a successor, i.e, § = § + w for 8 < w; limit.

For A C w; finite, we will use the notation, F? | A = {F € FB.F C A}, we also define
FPrlA={FeF’:FcA}foralli<uw.

First we construct a sequence (k;, D;, W;, i;)i<w with nice properties. We do this by induc-
tion. Start by fixing a bijection f : w — 5. Pick kg > 0 and Dg € ]-fo such that f(0) € Dy.
Pick also pg € Dy.
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Now suppose we have constructed an increasing sequence (k;)i<j in w, D; € .7:,’51_ for ¢ < j,
Wi e Fy, fori < j—1, and p; € D; for © < j. Such that

1. f(i) € D; for all i < j,

2. D; C pjyr foralli <j—1,

3. Wi pir1 = Dy Ny, for all ¢ < 4, and

4. W; \ pis1 is an interval of D,y such that p;q € W, for all i < j.

5. For every A C D; and a € D; there is F € FP D;41 with canonical decomposition
F = Uu<n, Fa, such that A C Fy and R(F) = Fp N .

We can apply &f finitely many times (at most mkj712m’“j*1 times) to obtain k£ > k;_1, and
D e F,f such that condition (5) works on F# [ D. Apply Xf one more time to find k; > k and

D; e }fj_ with canonical decomposition

i<nkj

such that D;_1 U{f(j)} UD C D;(0), and R(D;) = D;(0) N tj—1.

Since puj—1 € Dj—1 C D;j(0) we can apply Lemma 1.36 and obtain W € }'f_l such that
W\ pj—1 is an interval of D;(0), and W N (puj—1 +1) = D N (pj—1 +1). Let pj = min(D;(1)).
If ; : Dj(0) — D;(i) is the increasing bijection between D;(0) and D;(i), then let W;_; =
01(Dj-1). Note that p; = p1(pj—1) and then W;_; \ m; is an interval of D;(1), therefore
W;_1\ p; is an interval of D; since R(D;) C puj, . It is easy to check that kj;, Dj, p;, and W;_4
satisfy conditions (1) to (5). This finishes the construction of (k;, Dj, Wi, 1t )i<u-

Now for every j < w, let
F’j:(Djﬂ,uj)U{B,ﬂ-f-l,...,,B-l-|Dj\5‘—1},

and let ®; : D; — F; be the increasing bijection between D; and Fj. Note that condition (3)
and (4) imply

Qj=®j1100p;w, (2.1)

Now define

F(j,i) = (7 | ;)
Fre = F50)

k‘j>i
tw B+
Fote = JFor

<w
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5

Figure 2.1: The diagram is commutative, ®; = ®;,1 0 ¢p, w;.

Note that (2.1) imply that 7+ is well defined, W; is a witness to F(j,i) C F(j + 1,) since
FB D; is isomorphic to FB W;. Condition (1) implies FB < FBtw, Indeed, let F € .7:5,
there is j < w big enough so that £ > k;, and for every a € F there is i < j with f(i) = a.
Then F' C Dj;1, therefore F € F(j + 1,k)

We check that F7+% works. We have already checked Ky ™. To see K7 let A C 5+ w
finite and o < 8 + w. Take j < w big enough so that for every a € (AU {a}) N B there is
i < j with f(i) = a, and AU {a} C B+ j. Then, by condition (1) on the induction we have
(AN p) C Dy, therefore (AN B) C (Dj41 N pj41), which implies AU {a} C Fji1.

Let A* = @;_&I(A) and o = <I>j__&1(a). By condition (5), there is F* € FP | Dj o with
canonical decomposition F* = J,_,, F; such that A* C Fy and R(F) = Fy Na”. Now let
A = opwn (A%), & = ¢p,, wip (@), and F** = ¢op  w,,, (F*). Then F** has
canonical decomposition F*™* = {J,_,, F;" and A™ C Fg*, and R(F**) = Fg* Na**. If we take
F = ®;45(F**), then F € F(j + 2,k) and it has a canonical decomposition F' = Uicn, F(0).
By (2.1) we have ®;,5(A*) = A C F(0) and R(F) = F(0) N ®j42(a*™) but ®;42(a) = a,
also by (2.1). Therefore K7 holds.

ko

Let now
Fe=|J 7
B<wy
B limit
F=U %
k<w

Let us see that F is as we wanted.

Claim 2.6. F is a construction scheme of type (M, Nk, Tk ) k<w -
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Proof. To see F is a construction scheme, consider A C wy finite, F, F' € Fj, for some k < w.
There is 8 < wy limit such that A, E, F' C 8. Then &g implies E, I € .7-'5, therefore £ N F' is
an initial segment of £ and F. Also |F| = my and R(F) = ry, and there is D € F¥ such that
A C D, by construction D € F. This shows (1)—(3) in the definition of construction scheme.

To finish the proof, suppose there are two decompositions of F,

r=UJr=U#

i<n9 j<nl!

where FZ-O, Fj1 € Fp_1 for i < n® j < n'. By the construction there is some § < w; limit with
F, FZ»O,F]-1 e FO fori<n?j<n! (we can argue FZ-O,FJ»1 e FB for i < n®, j < n' but we do not
need this to reach a contradiction). This contradicts 3. Therefore F is a construction scheme

of type (mg, ng, 7k ) k<w -

Thus, we constructed F a construction scheme of type (my,nk, 7k)r<, which is what we

wanted to prove. ]

We know then that there are construction schemes in ZFC as we have already proved. Using
a construction scheme F, we can build different uncountable structures but we are not always
able to prove that this structures have interesting combinatorial properties without capturing.

On the next section we focus our efforts on the existence of capturing construction schemes.

2.2 Consistency of capturing F

In this section we show that, given any type (my, ng, 7 )x there is a fully capturing construction
scheme F of type (my,ng,rx)r. The proof will be by iterated forcing. We show that adding
k > Ny Cohen reals forces the result above. This is shown by starting with a construction
scheme F“ constructed as in Section 2.1, and then we build a name for F in V[G] which fully

captures every uncountable A-System of the form
({&} : £ € T') where I' C w; is uncountable. (%)

Let us show first recall the definition of capturing, and fully capturing construction scheme.

Definition 2.7. Let F be a construction scheme. We say that F is fully capturing if for every
uncountable A-system (s¢)¢<., of finite subsets of wy with root s, and every k* < w there are
F € Fj, with k > k*, canonical decomposition F' = |J
that

i<ng F;,and & < ... < &,,—1 < wi, such

s C R(F)
for every i < mny, sg \s CFi\ R(F),

for every i < ng, @i(sg) = s¢;-



34 CHAPTER 2. CONSISTENCY OF CAPTURING CONSTRUCTION SCHEMES

We have to show first, that if F fully captures A-Systems of the form () then it is fully

capturing.

2.2.1 Capturing A-Systems of the form (%) implies capturing

Recall that on Example 1.4 we kill 3-capturing by killing all capturing of A-Systems of the form

(% ). In this subsection we show that the reverse is also true. Namely we have

Lemma 2.8. Suppose F is a construction scheme which fully captures A-Systems of the form
(%), then F is fully capturing.

Proof. Let F be a construction scheme and suppose F fully captures all A-Systems of the
form ({&} : € € ') where I is an uncountable subset of wy. Let (Dq)a<w, be an uncountable
A-System with root D and k* < w. We want to show there are F' € F; with &k > k*, and
ag < ... < ap,—1 such that

Dai CF;, 1<ng

¢0i(Day) = Da,, 0 < mny
For every D, we are going to define the closure of D, on F, D,. Let
ko =min{{ <w:3F € Fy, D, C F}
Now pick F' € Fy,, with D, C F, and let
Dy = F N (max(Dy,) + 1)

Let us check that D,, is well defined since it depends only on D, and F, and not on the choice
of F' € Fi, we made above. Suppose we pick different F, F* € Fy_, with D, C F, F* we have
D, C FNF*. Since F N F* is an initial segment of both F' and F* we have F' N max(D,) =
F*Nmax(Dy).

Take S C w; uncountable, and kg,d < w, such that k, = ko and [D,| = d for all a € S.
Furthermore, given a < 8 in S, then ¢ ’BB(DQ) = Dg.

Let £ = max(D,) for all & € S. Consider {{{.} : a € S}, since F fully captures A-
Systems of the form () there are ap < ... < ap,—1 in S, and F € Fj, with k > ko, k*, such

that F' = F; is the canonical decomposition of F' and

<ny
Vi<nk7 gazer\R(F)

Vi <ng, ©ila) =&

Pick now E € Fy, with D,, C E, then ENFj is an initial segment of E. Recall &, € ENFy,
therefore Do, = EN (€4, + 1) C Fy. Arguing the same way we find D,, C F; for i < ny. Also
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0i(€an) = &a, therefore p;(Dy,) = Dg, which implies
Pi (D Oéo) =D o;

which in turn implies

Vi < ng, Dai\DEFl’\R(F)
This shows that F fully captures (Dgy)a<w, as we wanted. O

We are now in conditions to show the main result of the Chapter.

2.2.2 Adding Cohen reals and Capturing

In this section we show that adding W; Cohen reals also adds a fully capturing construction

scheme. Recall the following result Lemma from Chapter 1.

Lemma 1.36. For F € F,, E € F; and E C F (in particular | < k). For every p € E there
is a copy E* of E in F such that

1. E*N(p+1)=EN(n+1).

2. E*\ p is an interval of F with u € E*.

If we add N; Cohen reals, then we force a fully capturing construction scheme.
Theorem 2.2. Adding k > Ny Cohen reals also adds a fully capturing construction scheme.

Proof. Assume first that K = Yy. And let (my, ng, 7% ) be a type on the ground model. We start

by fixing F“, a construction scheme on w build as in Section 2.1, with the following property:

For every A C w finite and a < w there is F' € F with canonical decomposition

2.2
Uicn, Fis such that A C Fy and R(F) = FyNa. (2:2)

Definition 2.9. Let p € P if and only if supp(p) C w; finite, for every § € supp(p), ¢ is limit,
p(0) = (D5, af) where D§ € F¥, af € DY, and for every dy < 01 in supp(p)

1. D2 C D, and
2. ago < a§1
We say p < ¢ if supp(q) C supp(p),
(¢) for every § < &' € supp(q), ay, — ab > a}, — af, and

(i¢) for every 0 € supp(q) with D} € Fy, there is W € Fj,, W C D, with W N a§ having the
same size that D Naf, and W \ @ is an interval of Df with af € W.

We say p~ qif p< qand §<p.
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Note that P is equivalent to the forcing C,, for adding w; Cohen reals. To see this, notice
that P is a dense suborder of the partial order which is defined as above minus conditions 1, 2,
(i), and (7i), and this partial order is a finite support product of countable partial orders.

Now for a < 6 < wy, define the function ¢, 5 : w1 — w1 by

(6 a<a

¢a,5(a): ) )
0+ a=a-+1

Note that, for ¢ : w — w increasing we have

¢a,6

W — Wi

¥ d)ga(a),(s

Bp(a),s © P = Pas (2.3)

Now let p' € P, with supp(p) = (dp < ... < 6y) suppose p(6;) = (Dj,a;). We define
®P . D,, — w; as:
x x < ag
(I)q(x) = ¢ai75i (fL‘) a; ST < i1
gbany&n ('I) €T Z Qnp

Finally, for p" as above we define

F, = o7 (]—“w ' Dn)

Let G C P be a generic filter, we define F in V[G] as

F=UF
peG
Claim 2.10. Let £ < wy and p € P. There is § < p and © < w such that & = ®4(x). In
particular there is 6 € supp(q) with x € Dg.

Proof. Let £ < w; and p € P be given, we want to find ¢ < p'and = < w such that £ = ®4(x).

Take § < wj limit such that § < & < § +w. We write & = § + ¢ where ¢ < w. Consider
supp(p) = {do < ... < dn} and p(&;) = (D, a;) with D; € Fp..

Case 1: 0 = §; for some j < n, Pick a > D,, and find F' € 7% with canonical decomposition
Uicn, i DnU{aj,a; +1,...,a; + £} C Fy and R(F) = Fy Na;. Apply Lemma 1.36 to find
Wi e Fi for i > j, such that [W; Na;| = [D;Nasl, (W] \ a;) is an interval of F' with a; € W/,
for i > j. Now let ¢; = p1(a;), and W; = ¢ (W}*) for i > j.
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Define ¢ € P with supp(q) = supp(p) such that

(Dj,a;) for v =0;1<j.
qy) =
(F,c;) for v =0;1>j.
Note that the W;’s witness ¢’ < p. By construction ®4(a; + ¢) = £.
Case 2: 0; < 0 < 641 for some j < n. Assume then there is j < n with §; < < d;41. Pick
a > D, and find F' € F¥ with canonical decomposition Ui<nk F;, D,U{a,a+1,...,a+ ¢} C F
and R(F) = Fy Najt1. Apply Lemma 1.36 to find W € Fp for i > j, such that [W; Na;| =
|D; N a;|, (W} \ a;) is an interval of F with a; € W}, for i > j. Now let ¢; = ¢i(a;), and
Wi = 1 (W) for i > j.
Define ¢ € P with supp(q) = supp(p) U {0} such that

(Dj,a;) for v =0;1<j.
q(v) = { (F,a) for v =0,
(F,c;) for v =6;,i>j.

It’s clear that ¢ < p' (this is witness by the W;’s) and ®%(a + ¢) = £ by construction.

Case 3: § < §g. Take a > D, and find F € F¥ with canonical decomposition Ui<nk F;,
DpU{a,a+1,...,a+ ¢} C Fy and R(F) = 0. Apply Lemma 1.36 to find W € F} for i <mn,
such that |W>* Na;| = |D; Na;|, (W} \ a;) is an interval of F' with a; € W, for i <n. Now let
¢i = i1(a;), and W; = 1 (W) for i < n.

Define ¢ € P with supp(q) = {d} U supp(p) such that

- (Fia) forvy =4,
q(v) = ,
(F,c;) for v =6;,i<n.
The construction shows that ¢ < p (by the pick of the W;’s) and ®4(a + ¢) = £ by construction.
Case 4: § > 0,. Pick a > D,, and let F € F¥ such that D, U{a,a+1,...,a+ ¢} C F.
Apply Lemma 1.36 to find W; € Fi, such that [W; N a;| = [D; Na;f, (Wi \ ;) is an interval of
F with a; € W;.
Define ¢ € P with supp(q) = supp(p) U {4} such that

(D;,a;) for v =6;,1 < n.
(F,a)  fory=24.

qlvy) =

By the construction and the choice of W;’s, we have ¢ < p'and ®9(a + () = £.
This finishes all of the cases. O

We see now, arguing as in Section 2.1, that F is a Construction Scheme.
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Claim 2.11. F as above is a construction scheme on V|[G].

Proof. Now let A C w; finite and p' € P. Write A = {§ < & < ... < &,}. We can apply
Claim 2.10 to find @i < p and x; < w finite such that ®%(x;) = £;. Inductively we can find
n <...<q@ <pand z1,29,...,r, <w such that &% (z;) =& for alli =1,2,...,n.
If supp(qn) = {00 < ... < 6, } and §¢(6;) = (Dj,a;), then F' = &4 (D,,) is such that A C F
and
qgn\FF eF

This shows property 1 of a Construction Scheme.
To see 2 note that F' € Fj, if there is some p € P and F' C wy finite such that F' € &P (.7:,2’ i

Dn), where supp(p) = {61,...,0,} and p(6;) = (D;,a;). Thus there is D € F} such that
F = ®P(D). We have |F| = |D| =my, and |R(F)| = |R(D)| = r because ®” is a bijection.

To simplify the notation, when we take p € P, we assume supp(p) = {d1,...,0,}, and
p(0;) = (D;,a;), and we consider F¥ | D,. In other words when we write F“ we mean
F¥ | Dyp. This way we are free to use the symbols D, and n without confusion.

We check property 3. Let ', E € F, in V[G]. Then there is some 5 € P, and Dy, Dy € Fy
such that F' = ®P(Dy), and E = ®P(D;). Since PP is an increasing bijection we have F N E =
®P(Do N Dy) C ®P(Dy), ®P(Dy). Which shows FFNE C F, E as we wanted to show.

We prove property 4 by contradiction. Let F' € Fj such that there are two different

F=JR=F
i<n j<n’
There is p' € P such that ' € ®P(Fp), and I, F] € ®P(F ), for i < n and j < n’. By
definition there are D € F}’ and Di,D;- € FY, fori < n, j <n,such that F = ®P(D),

F; = ®P(D;) for i <n, and Fj = ®P(D’) for j < n'. Since @ is a bijection we have

D=|JD;= | D]

i<n j<n’

decompositions of F' in V|[G].

this contradicts the uniqueness of decomposition of F.

And so F is a construction scheme on V|[G] as we wanted to show. t

We have F on V[G] a construction scheme on V[G]. To show F is fully capturing, let I" be
a name for an uncountable subset of w; which defines a A-System of the form (%), and k* < w

be given. Take ) C wy uncountable and p,, € P for a € 2 such that
PalFacl (2.4)

By Claim 2.10 above, we can assume without loss of generality that there is ¢ € supp(p,) such
that P (0) = (D, a), and a € ¢45(D).
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Find Qp C Q uncountable, 40 < ... < 0q,g—1 < w1 limit, D; € Fpfori<d, ap <...<

aq—1, and x < w such that:
1. (supp(pa) : @ € Q) form a A-System with root {6a0,...,0a,r—1},
2. supp(Pa) = {0a,0,- - - a,d-1},
3. Pa(da,i) = (Di,a;) for every i < d,
4. x € Dj_q and P (z) = a.
Take jo =d —1if £ > aq_1, or jo < d such that a;, <z < aj,4+1.
Pick k > k*, kg—1, and ag < ... < oy —1 in Q9. We want to find ¢ € IP such that

JF a; € I, F captures ag, ... , Oty 1. (2.5)

Take F'* € F}’ such that, F* = J
and R(F*) = Fj N a,.

For i < d, note a; € D; C Fy, therefore we can apply Lemma 1.36 to find Wy, € ]—',;"i with
[Woi N a;| = |D; Na;| and Wy; \ a; an interval of F§ with a; € Wy;. Let ¢; : Ff — F be
the increasing bijection between Fy and F'. Define Wi; = ¢;(Wo;), and a;; = ¢p, w;,,(a;) for

i<ny F; is the canonical decomposition of F'*, Dy_1 C Fy,

i <ng, j<d, and z; = pp; wi, (x) for i < ny.

Since ; is a bijection we have
Wi; € .7:];‘;, ’Wij N aij\ = ’Dj N aj|, and W;; \ a;; is an interval of I'* with ai; € Wij (2.6)

and by equation (2.3) we have
¢aij0,5]-0 (xl) =y (27)

We define ¢’ € P with supp(q) = {0a,,; : © < nk,j < d}. Note now that é,; does not depend
on « for i < r.

T(6us) = (Dj,aj) forj<r
(F*,a;;) forj>r

With this definition, we have ®%(x;) = ¢q,; 5, (z:) = a; by (2.7). Also, § < pa, for i < ny.
Indeed supp(q) C supp(pa; ), and condition (i) of Definition 2.9 holds. Given ¢;; € supp(pa,)-
If i < r then py, (0i5) = (Dj,a;) = q(d;5). If i > r, by (2.6), we have that Wj; Na;; has the same
size that D;jNa; and (W5 \ a;5) is an interval of F*. This shows condition (i) of Definition 2.9
Therefore ¢’ < p,,. Which implies ¢'IF o; € I for every i < ny because of (2.4).

Finally, let F' = ®(F*). Then ¢l F € F, and by the construction of (z; : i < ny,) and (2.7)
we have ¢ forces F' captures ay, ..., oy, —1. Therefore (2.5) holds which is what we wanted to
prove.

To see that in V[G] there are fully capturing construction schemes of any type suppose we

are given a name { for a type on V[G], i.e, a name for a sequence of integers that forms a type.
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For A C wy, let P4 be the collection of conditions p € P with supp(p) C A. Take o C P a
maximal antichain such that, every p € .o decides £ | 2. This means p decides the first two
elements in the sequence £. Suppose we continue this way, and find 7. For every p € 4/ we

find %, a maximal antichain below p such that, every ¢ € %, decides t ] (¢+2). Let

Aoy = | Bou
PE,

A=\ A
I<w

Since P has the ccc, every 7 is countable and therefore o7, is countable. Also, every p € 47,
has finite support, thus there is some & < w; such that o7, C P,. This implies ¢ is in V[G4)]
where G, = GNP,.

It is well known (see for example Theorem 8.2.1 of [Kun80]) that P = P, * P,,,. We can
consider V[G,] as the ground model, then # is a type on the ground model and forcing with
P\« s equivalent to adding ®; Cohen reals, therefore it adds a fully capturing construction
scheme of type t.

Suppose now x > N;. Let C, be the forcing for adding x Cohen reals. We know that C,,,
adds capturing construction schemes, by Lemma 2.12, forcing with Cy,,, preserves capturing
since it has precaliber N;. Therefore forcing with C, adds capturing construction schemes.

O

2.3 The hierarchies of n-capturing construction schemes and

m-Knaster

We say a forcing notion P is K,,, if for every uncountable sequence (pq)q of P we can find an
uncountable subsequence (pa., )+, such that every v < ... < v, < w; we have Doy, s+ s Payy,
have a common extension.

Throughout this section we will fix some n, m > 2. Recall that MA,,, (K,,) implies MA,, (K5,)
for every m < n, whereas n-capturing implies m-capturing for every m < n. Thus, we have the

following two hierarchies:
MA,, (K3) — -+ - —— MA,, (K,,)) — MA,,, (K;,41) — - - - —= MA,,, (precaliber X;)
2-capturing ¢é— - - - &—— n-capturing ¢« (n + 1)-capturing ¢— - - - &——— capturing

The main result of this section give us a relation between this two types of axioms and shows

that none of the implications above can be reversed. In particular it is consistent that there

are n-capturing construction schemes but no m-capturing construction schemes for m > n.

Theorem 2.3. MA,, (K,,) and n-capturing are independent if n < m and they are incompatible

if n > m. Also MA,, (precaliber ¥y ) is independent of capturing.
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We start the analysis of n-capturing with the following preservation lemma.

Lemma 2.12. Capturing is preserved by K, forcing notions. Let P be a K,, forcing notion and
let F be a n-capturing construction scheme on V. If G C P is a generic filter for P, then F is
a n-capturing construction scheme on V[G]. In particular capturing is preserved by precaliber

Ny forcing notions.

Proof. Let P be a K, forcing notion and I" a P-name for an uncountable subset of wi. Let
W C wy and p, € P, a € W such that

palFael

for every a € W. Since P is K, there is n-linked Wy C W uncountable. Recall F is n-capturing
in V, therefore there are ag < ... < a,—1 in Wy which are captured by F. We find now ¢ € P
with ¢ < po,...,pn—1, then

glFag,...,an_1 €T, and they are captured by F.

O]

The following result is well known but we give a detailed proof for the convenience of the

reader.

Theorem 2.13. Let k > Ny be a reqular cardinal such that k** = k. Then:
1. There is a focing notion with precaliber Ry which forces MA,, (precaliber Xy ).
2. There is a Ky, forcing notion which forces MA,, (Km).

Proof. We will construct P with precaliber X; as an iteration (P, Qa : o < k) where for every
o, Qq = {0} or
IFp, Qa has precaliber Nj.

It is clear that we can repeat the same argument with K,, forcings instead of precaliber N;.
We start by fixing a coding function ¢ : kK — k X k such that ¢ is surjective and ¢(a) = (8,7)
implies 8 < a.

Notice there are 2“! many non-isomorphic forcing notions of size < w; which have precaliber
R;. We use the axiom of Choice to make an exhaustive list of them (Wy : v < k). We can do
this because |27 < k! = k by the hypothesis of the Theorem. Now we take Py = W s where
d < k is such that ¢(0) = (0,9).

Suppose we have (P,, Qu:a< 9), such that for every a < 9,

(2) Pa—i—l = Pa * Qa,

(11) |Pq| < k,
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(7i7) P, has precaliber X;, and

(iv) Q, is a Po-name for a forcing notion of size at most wy; which has precaliber Ry i.e,

IFp, Qa is a forcing notion that has precaliber N;.

we want to find Ps and Qg.

If § is limit we let Ps be the countable support iteration of (IP’a,Qa i a < 0). Then P;
satisfies conditions (i7) and (éii) because having precaliber N; is preserved by finite support
products (condition (z) and (iv) are void in this case).

If § is a successor, then § = v+ 1 for some v < §, also we have Q'y is a Py-name for a forcing
notion with precaliber X; by (iv) above. Consider P; = P, * Q,. Then conditions (i)—(ii) are
satisfied because having precaliber N; is preserved by finite products.

To complete the forcing we have to find a Ps-name Qj for a forcing notion of size < w;
which has precaliber N;.

We consider, as before, all possible names for forcings of size < w; which has precaliber N;
(note that wy is preserved because Py is ccc). We know the size of Py is < k because Ps = ]P’7>i<(@7
and, by (ii) we have [P,| < &, and by (iv), Q, is a name for a forcing notion of size < wi.
Thus, there are at most k“* = k many Ps-names for a focing notion of size wi. We can write
an exhaustive list with all of the names for forcings of size < w; which have precaliber Ny,
(Wsa: a < K).

Now we consider ¢(d) = (3,7) and look at Wjs,,. In other words, consider the n'* Pg-name
for a forcing notion of size < wy that has precaliber N;. Since Wpg, is a Pg-name, it is also a
Ps-name. If Ps forces that Wpg, has precaliber Ny then we let Qs = Wgp, where (8,1) = ¢(6)
as before. Otherwise, we let Q; = {#}. This gives us (P, Qq : @ < §) with properties (i)(iv)
as we wanted.

Let P,; be the finite support iteration of (P, Qu:a< k). Since precaliber ¥ is preserved by
finite support iterations we have P, has precaliber X;. We show that P, forces MA,,, (precaliber
N1 ). This finishes the proof of the Theorem. O

Claim 2.14. P, forces MA,, (precaliber Xy ).

Proof. Fix G, a generic filter for P,. For simplicity of notation we will represent the forcing
notion of P, as I, instead of IFp, .

Let W € V[G] be a forcing notion of size < w; which has precaliber Ny, without loss of
generality we can assume W is (w1, <), and let 2 = (D : @ < w) € V[Gx] be a collection of
dense sets of .

For every a, f < wi, pick two maximal antichains, A, g and B, g such that:
1. for every q € A, g, ¢ decides whether a=p.

2. for every q € B, g, q decides whether o € Dﬁ'
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i.e, the antichains contain all relevant information about W and 2.

Now consider

A= U Aa,gUBaﬂ

a,f<wi

Since PP has finite support, every ¢ € A is in P, for some ay < k. Also note |A| = Rg-w1 < k.
Thus there is A = sup, oy < k such that P\ contains all of the information about W and 2.
This means that W and & are in V[G,], therefore there is a Py-name for . This name will
be somewhere on the list (W) o : @ < k) we constructed above. Say W), is the Py-name for
W.

Recall we constructed P, with ¢ : kK — Kk X Kk surjective, so there is some stage & > X such
that ¢(d) = (\,n). Since W and 2 are in V[G)] they will be in V[Gs], and W), = Qs by the
choice of . Therefore G541 is a P-generic filter and Gg4q is in V[G,] and this finishes the
proof. O

Consider the following property

(¥)m For every I' C w® there is ') C I' uncountable such that I'g has no go,..., g, and k < w
with go [ k=...=gm [ k, and |[{go(k),...,gm(k)} =m + 1.

Recall the following result of Todorcevi¢ implicit in [Tod89]

Theorem 2.15 (Todorcevi¢ [Tod85], see also [Tod89]). MA,, (Ky,) implies (3 )m.-
The following result proves the first half of Theorem 2.3

Theorem 2.16. Let F be a (m + 1)-capturing construction scheme. Then (¥ )m, fails.

Proof. Let F be as above. For every F' € F; we construct, inductively on I, (f£ : (I1+1) —
Nj)a<w, such that

1. for £, F € F; and ¢ : E — F the increasing bijection between E and F', for every o € F,
if 5= ¢(«) then fg = [k,
2. for E € Fjyand F € Fy,, lg <li,if a € ENF then f£ [ (Iog+1) = fE.
Let F' € Fj with canonical decomposition F' = J,_,, Fi and suppose (ffi i a e F)is
defined for all i < ny, satisfying (1) and (2) above. Let f' =0 if a ¢ F.

For a € R(F) let fF(k) = Nj_y and fF | k= fFo.
For g € Fy \ R(F) and o; = (), i < ng. Welet f£ | k= fE and

OZ:Nk_l—i-i—l—l

And let Ny = Np_1 +ng + 1.
It is easy to see that (1) and (2) hold, and so fo = Upcr fL is a well defined function. Then
' ={fa:a<w} is a witness to the failure of (¥),,. To see this suppose I'g = {f, : « € W}
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where W C wy is uncountable. Since F is (m + 1)-capturing there are & < ... < &, in W
captured by some F' € Fj. This implies fe, [ k= ... = fe, | k and [{fe,(k),..., fe,.(k)} =

m + 1, and hence (%), fails as we wanted to show. O

Proof of Theorem 2.3. Start by assuming n < m. To see n-capturing is independent of MA, (K,,),
note that any model of MA,, is also a model of MA,, (K,,) and contains no n-capturing con-
struction scheme for any 2 < n < w (see [LT17] for n > 2, and see Proposition 2.19 of this
paper for n = 2). Thus, it is consistent to have MA,, (K,,) and no n-capturing construction
schemes. To show the other direction, start with a model V' that has a capturing construction
scheme F. Let K, be the K,,, poset that forces MA,, (K;;,). Then F remains m-capturing on
the extension by Lemma 2.12 hence it is n-capturing provided n < m.

Suppose now n > m and V is a model of MA,,, (K,,), then (%), holds on V. By Theo-
rem 2.16 we know V contains no (m + 1)-capturing construction scheme, otherwise (%), fails
which is a contradiction. Thus V' has no n-capturing construction scheme for n > m, as we
wanted to show.

To see MA,,, (precaliber X;) and capturing are independent we proceed in the same manner.
Any model of MA,, satisfies MA,,, (precaliber X;) and has no capturing construction scheme.
Finally, let V' be a model that contains a capturing construction scheme. Let K be a forcing
notion with precaliber X; that forces MA,,, (precaliber 8;). Since K has precaliber X, F remains

capturing in the extension. This finishes the proof. ]

It is interesting to find a K,, forcing notion that kills (n + 1)-capturing in an obvious way.

Suppose F is a capturing construction scheme. Let F be fixed.

Definition 2.17. Let P € P, if F does not capture {{fz} 11 < n} for any § < ... < &, in P.
We say P < Q if Q C P.

Lemma 2.18. P, defined as above is K.

Proof. Take (P, : a <wi) C P,. We can find D, € Fj, such that P, C D,.
Find I" C w; uncountable, and k < w such that

1. (Dqy : a €T) forms a A-System,
2. ko =k for all « € T, and
3. for every a < B in I, we have pp, p,(Pa) = Ps.

Note that (2) and (3) imply that for all « < 8, £ € Dy N Dg, then £ € P, if and only if
§ € Pg.

We show (P, : a € ') is n-linked. Take ap < ... < ap—1 inT. Let Q =Y
o < ...< & arein Q and F € Fy captures {{El} 11 < n} Take F =

i< Pi- Suppose

i<ng F; the canonical



2.3. THE HIERARCHIES OF n-CAPTURING CONSTRUCTION SCHEMES AND m-KNASTER 45

decomposition of F'. We must have

fiGFi\R(F)

(2.8)
(F; \ R(F) : i < n;) are pairwise disjoint

Let us get a contradiction.

Case | < k: Let j <n with §, € P,,. Applying Proposition 1.33, F'N D,; E F'. Therefore
€0,---,&n € Dqo, which implies &, ..., &, € P,;. But F captures {{&} 11 < n} and this is a
contradiction because Py, € Py

Case [ > k: There is some j < n and i9 < i1 < n such that &;,,&;, € Py;. Then F;, € Fy_q,
and Fj; N Dy, E Dy, by Proposition 1.33, but this implies &;, € Fj,. This contradicts (2.8)

We conclude that for every § < ...&, in @, F does not capture {{ﬁz} c1 < n} Hence
Q € P,,. It is clear that Q < P,, for ¢ < n. This finishes the proof. O

It is clear that [P, kills (n + 1)-capturing, thus we have an explicit proof that MAy, (K,,) is
incompatible with m-capturing for m > n.
Assume m > 2 and note that the model obtained in the proof of Theorem 2.3, which starts

with a capturing construction scheme and then forces MA,, (K,,), shows the consistency of
MA,, (K,,) + m-capturing + —(m + 1)-capturing + ~MA,, (K;n—1)

this gives us an alternative proof of MA,, (K,,) £MA,,, (K;,+1) showing that the hierarchy of
m-Knaster forcing axioms is strict.
To get that MA,, implies there are no 2-capturing construction schemes, we prove the

following;:
Proposition 2.19. If F is 2-capturing, then Py is c.c.c.

Proof. Suppose (P, : @ < w;) C P; forms an uncountable antichain, and refine this family
so that it forms a A-system. Since F is 2-capturing, we can recursively construct a family
(Do : v € T') C F and refine it so that (D, : « € I') C Fj, forms an uncountable A-System, and
for a € T', D, captures some (P, P,). Again, since F is 2-capturing, there are some F € F,
a < B €T, such that F captures (Dq, Dg).

We claim that P, U Pgr € P, which finishes the proof with a contradiction. Suppose
& < & € Py U Pgr are captured by some E € F;. Note that since Py, Pgr € Py, §g € Py \
Py, & € Pgr \ Py, and s0 & € Do \ D, &1 € Dg\ Do Let E =, Ei, Dg = U;,,, (Dp)is
Do = U;<p, (Da)i be the respective canonical decompositions.

Case [ < k: Applying Proposition 1.33, ENDg C E. Therefore {&; € EN Dg gives &y € Dg,
and this is a contradiction.

Case | > k: Recall that ¢g, g, (F | Eo) = F | E1, and D, capturing (P,, P,) implies
& € (Da)o \ R(D,). Since there is some E' C E with § € E' € F, and & € (Da)o € Fr—1,

we get that £ must be in the 0’th component of the canonical decomposition of E’, and hence
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®Ey,E, (§0) = & must be in the 0'th component of the canonical decomposition of some element
in F, | E1, which contradicts & € (Dg)1 \ R(Dg).
O

2.4 Other forms of capturing
Recall the definition of P-capturing construction scheme from [Tod17].

Definition 2.20. Let w = J,, P be a partition of w into infinite components and let P =
(P : £ < w). Suppose (my,ng, ) forms a type such that for every ¢ < w, and every r < w

there are infinitely many k’s in P, with rp = r. Then we say (my, ng, 7 ) forms a P-type.

Definition 2.21. Let F be a construction scheme with type (mg,ng, 7%)k, and 2 > n. We
say F is n-ﬁ—captum’ng if (mg,ng,ri)r forms a f’-type, and for every uncountable A-system
(8¢)e<w, of finite subsets of w; with root s, and every ¢ < w, there are ) < ... < &1 < wi,
k € Py and F € Fj, with canonical decomposition F' = Ui<nk F;, such that

s C R(F)
for every i <mn, s¢ \s C F;\ R(F),

for every i <mn, pi(sg,) = Se¢;-
We say F is ﬁ—capturmg if Fis n—ﬁ—capturing for every n < w.
We prove the following Theorem about the consistency of other forms of capturing.

Theorem 2.22. Adding k > Wy Cohen reals implies there are ﬁ—capturing construction schemes,

and fully ﬁ—capturing construction schemes.

Proof. The proof is an adjustment of the proof of Theorem 2.2 therefore we only give a sketch
for a fully ﬁ—capturing construction scheme.
Let P be a partition of w and let (myg, nk, 7k)k<w be a given ﬁ—type on the ground model.
It is easy to see, using the fact that (mg, ng, 7% )k<w 1S a lf"—type7 that there is a Construction

Scheme F* on w such that:

For every ¢ < w, A C w finite, and a < w, there is k € P, and F' € F; with canonical

F;, such that A C Fy and R(F') = FyNa. (2.9)

decomposition UJ;_,,

Suppose now F is defined as in Theorem 2.2 and I is a name for an uncountable subset of
wy which defines a A-System of the form (¥). Let ¢ < w and k* < w be given.
Find © C wy uncountable and p, € P for o € Q such that

palFael (2.10)
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And there is § € supp(pa) such that p,(6) = (D,a), and a € ¢ 5(D). And 640 < ... <
da,d—1 < wi limit, D; € Fr fori<d, ap <...<ag_1, and x < w such that:

1. (supp(pa) : @ € Q) form a A-System with root {da.0,...,0a,r—1},

2. supp(pa) = {0a,0, - - 0a,d-1},

3. pa(da,i) = (Di,a;) for every i < d,

4. For x € Dy_1 with ®P=(z) = a, there is fixed jo with: jo =d—1ifz > ag_1, or jo < d—1

and is such that a;, < < aj;41.

Apply (2.9) to find k € Py with k > k*, and F* € F}’ such that k > kg1, F* = U, F/
is the canonical decomposition of F*, Dy_y C F{, and R(F™) = F§ N a,.
Pick arbitrary ag < ... < ay,—1 in Q. We construct ¢ € PP, such that
gk a; € T',3F € F, captures ao, .. ., Qpy—1- (2.11)

For i < d, note a; € D; C Ff, therefore we can apply Lemma 1.36 to find Wy, € F; with
WoiNa; = DiNa; and Wy, \ a; an interval of Fj with a; € Wy ;. Let ¢; : Fj — F; be the
increasing bijection between Fj and F;". Define W;; = ¢;(Wo;), and a;; = ¢p, w;,(a;) for
i<n,j<d, and z; = pp, w, (x) for i < ny.

It is easy to check that

Wi € i, IWij Naijl = [DjNaj|, and Wi\ a;; is an interval of F* with a;; € Wi ; (2.12)

and as before we have
gbai,jo’(sai’jo (xl) = (2.13)

We define ¢ € P with supp(q) = {6qa,,j : ¢ < n,j < d}. Note now that é,; does not depend
on « for i < r.
(Dj,a;)  forj<r

q((sOmj) = .
(F*,a;5) forj>r

With this definition, we have ®(2;) = ¢q, ;, ; 0a,jo (i) = ci by (2.7), and (W;j : v < j < d)
is a witness to g < pq,, for every i < my, by (2.12). This implies ¢ IF ; € T for every i < ny
because of (2.10).

Finally, let F = ®4(F*). Then q I F € F, and by the construction of (z; : i < ny)
and (2.13) we have ¢ forces F' captures ag, ..., &y, —1. Therefore (2.11) holds which is what we
wanted to prove.

[

We also have the following results related to the consistency of n—]s—capturing. The proof

is analogous to the arguments in Section 2.3.
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Theorem 2.23. Let P be a partition of w as above. Then n—]s—capturing and MA,, (Ky,,) are
independent if n < m and they are incompatible if n > m. Also ﬁ—capturing, ﬁ—fully capturing,
and fully capturing are all independent of MA,,, (precaliber Xy ).

It is clear that n—ﬁ—capturing implies n-capturing and ﬁ—capturing implies capturing, how-
ever we do not know if any of the implications can be reversed. Analogously, fully capturing
implies capturing but we do not know if it is consistent to have capturing without fully captur-

ing.

2.5 Summary of Consistency Results

We finish the Chapter with a list of all of the consistency results about capturing construction
schemes that we know at this moment. The proofs of this results will be given in later Chapters
of this Thesis.

For the sake of simplicity, when we say there is a capturing construction scheme F, or
when we talk about consistency of capturing, consistency of n-capturing, or a variant of
the above, what we mean is that for any given type (mg,ng, rr)r<w, there is a capturing (n-
capturing) construction scheme F of type (mpy,nk, 7k)k<w- A summary of all results can be

seen in Table 2.1.

Axiom Relationship to capturing F Notes
Suslin Tree Consequence of 3-capturing Theorem 3.1
Destructible gap Consequence of 3-capturing Theorem 3.3

O Implies capturing Theorem 2.3 of [Tod17]

CH Independent Theorem 2.28
p=uw1 Independent Theorem 2.24
PID Incompatible with 3-capturing Corollary 2.27
MA,, Incompatible with 3-capturing Corollary 1.30
PFA Incompatible with 3-capturing Theorem 1.29
MA., (precalliber R;) Independent Theorem 2.3
MA.,, (o-centered) Independent Theorem 2.24
MA., (Km) Indep. of n-capturing if n < m, incomp. if n > m. Theorem 2.3

Table 2.1: Relationship of different axioms with the existence of a capturing construction scheme

F.
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Theorem 2.24. Let k > Ny, with k = k<%. Then it is consistent that there are fully ﬁ—captum’ng
construction schemes and MA(o-centered) holds. In particular p = k.

Also, it is consistent that there are fully ﬁ—captum’ng construction schemes and p = wy.

Proof. Following the proof of Theorem 2.13 we can show that there is a forcing notion that has
precaliber N; and forces MA (o-centered). It is well known that finite support iterations add
Cohen reals at limit stages, therefore there are fully ﬁ—capturing construction schemes.

The second part follows from a result of Bell.
Theorem 2.25 (Bell [Bel81]). Let k = min{\ : MA,(o-centered) fails}. Then p = k.

To finish the proof let V' be our ground model. Then adding w; Cohen reals implies there
are fully ﬁ—capturing construction schemes. We just have to show p = w; after adding wy Cohen
reals. We are going to show that b = w;.

Consider the family 2 given by the sequence (f, : a < wi) added by C,,. We show this
sequence is unbounded on w®.

Let M = V[G,] be our ground model and let G\ be a generic filter for Cy. Take g : w — w
in M[G,,] and let § be a name for g on M. Since C,, has the ccc, we can pick a maximal
antichain <7, deciding the value of g(k). Recall C,, is a finite support iteration, therefore for
every p € @/, there is oy < wp such that p € C,,. Let

o = |
k<w
and take A = sup{ay,, : p € &}. Then g € V[G,].
Now we prove that fii1 £* g. Without loss of generality we can assume g € M and we
force with C; adding a single Cohen real f. Let p € C; and n < w; be given. Take k > n such
that supp(p) < k. Let ¢ be equal to p on supp(p) and g(k) = g(k) + 1, then ¢ < p and

gl f(k) > g(k)

This implies f £* g and finishes the proof that b = w; hence p = w; as we wanted to see.
O]

We would like to remark that it is known (see Roitman [Roi79]) that adding a Cohen real to a
model of MA,,, (o-centered) preserves MA,,, (o-centered). Also, adding a Cohen real to a model
of MA,,, (precaliber R;) gives a model where MA,, (o-centered) holds but MA,,, (precaliber V)

fails. Therefore,

Corollary 2.26. It is consistent that there are capturing construction schemes, MA(o-centered)
holds, but MA,, (precaliber X;) does not holds.

This previous results are interesting when we take into account Theorem 3.1 from Chapter
3,
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Theorem 3.1. Assume there is a 3-capturing construction scheme, then there is a Suslin tree.
Now we have the following immediate corollaries
Corollary 1.30. MA,, implies there is no 3-capturing construction scheme.
Recall that there are no Suslin trees in a model of PID, i.e, PID implies Suslin Hypothesis.
Corollary 2.27. PID implies there is no capturing construction scheme.

It is a classical result of Todorcevic [Tod06] that MA,, and PID imply that every Banach
space of density w; has an uncountable Biorthogonal System. In Chapter 4 we will show
that capturing construction schemes imply there are Banach spaces of density w; without

uncountable Biorthogonal Systems. This leads to the following Corollary which also follows
from the previous Corollary since PFA implies PID (see [Tod00] and [Tod11])

Corollary 1.29. PFA implies there is no capturing construction scheme.

This is a consequence of the discussion above and the fact that PFA implies MA,, and PID.
PFA is the forcing axiom for proper forcings, the definition of proper forcing is tangential to
this work. The interesting reader is refer to Shelah [She98] or the monograph of Baumgart-
ner [Bau84], for the reader interested on the applications of PFA we refer to Todorcevic [Tod14].

The following Theorem summarizes all of the positive results about existence of capturing

construction schemes F.

Theorem 2.28. Let k > Ny be a reqular cardinal such that k<" = k. The following statements

are consistent:
(i) There is a fully ﬁ—capturing construction scheme and < holds. In particular CH holds.
(ii) There is a fully P-capturing construction scheme and MA,, (precaliber Xy ) holds.

(ii1) There is a n-capturing construction scheme and MA,, (K ) holds.

(tv) There is a fully ﬁ—capturing construction scheme, b =N, ¢ = k.

(v) Let P = (Po,Qq : o < k) be a finite support iteration. If there is n < k of cofinality w;
and for everyn < a < K,
IFa Qa has precaliber Nq

then PP forces there are fully f’-capturing construction schemes.

(vi) Let P = (Po,Qu : o < k) be a finite support iteration. If there is n < k of cofinality w;
and for every n < a < K,
Fo Qo is K

then P forces there are m-ﬁ—capturmg construction schemes.
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The only part that needs futher explanation are part (v) and (vi). It is a well known result
that finite support iterations add Cohen reals at limit stages therefore, if P is as in part (v)
above, then P, will had w; Cohen reals and there are fully ﬁ—capturing construction schemes.
This construction schemes are preserved by the iteration because of Lemma 2.12. An analogous

argument shows (vi).
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Chapter 3
Trees and (Gaps

We turn our focus now to applications of capturing construction schemes. Within Set Theory
the study of trees and gaps is interesting as they are relatively simple combinatorial objects
that appear relatively often. We show that there is a natural construction of a Suslin tree and
a Hausdorff T-gap provided there is a capturing construction scheme.

We start the Chapter showing the following result.

Theorem 3.1. Assume there is a Construction Scheme that is 3-capturing. Then there is a

Suslin tree.

We then use the same idea to prove that there are T-gaps in every model with a 3-capturing
construction scheme. Remember the definitions of Hausdorff (wq, wj)-gap, destructible gap, and

T-gap.

Definition 3.2. 1. A pre-gap (aq,ba)a<w, form a Hausdorff (w;,w;)-gap if for every un-
countable I' C wy there are a < # in I" such that a, Nbg # 0.

2. We say a gap (aq,ba)a<w, is a destructible gap if for every uncountable I' C w; there are
a < B in I' such that (aq Nbg) U (ag Nby) = 0.

3. We say a gap (aa,ba)a<w, 18 a T-gap if for every uncountable I' C w; there are @ < 3
such that a, C ag and b, C bg.

We show the following result.

Theorem 3.3. Assume there is a 3-capturing construction scheme. Then there is a Hausdorff

(w1, w1)-gap that is a T-gap.

The proof of the Theorem contains a natural example of a T-gap. This becomes more
interesting when this construction is compared with previous known examples of T-gaps. For
a construction of a Hausdorff T-gap using <) the reader is refer to Alan Dow [Dow95].

We do not know if the previous results can be improved to the case of 2-capturing construc-

tion schemes. We can say more about this question if we use partitions to capture.

53
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Theorem 3.4. Let w = J,__ P;, with P; infinite, and let P = (P; : i < w). Assume there are

Q—ﬁ—capturing construction schemes, then there is Suslin tree and Hausdorff T-gap.

<w

We finish the Chapter studying the relation between T-gaps and destructible gaps, or S-
gaps. Recall that every T-gap can be filled by a ccc forcing notion, Proposition 1.13. Therefore,
the existence of a 3-capturing construction scheme implies there is a destructible (w1, w1)-gap.
Every T-gap is destructible but the converse need not be true. More precisely, we have the

following result

Theorem 3.5. There is a model of set theory in which there is a destructible Hausdorff (w1, w1)-

gap but with no T-gaps.

3.1 Suslin trees

We dedicate this section to show that 3-capturing implies there are Suslin trees. We also talk
about some of the consequences of this result. More concretely, we want to prove the following

result.

Theorem 3.1. Assume there is a Construction Scheme that is 3-capturing. Then there is a

Suslin tree.
This Theorem gives us another proof of the following Corollary.
Corollary 1.30. Assume MA,, . There are no 3-capturing construction schemes.

Recal that Corollary 1.30 was proved in Chapter 1 directly. In Chapter 2 we saw a different
proof: If there are 3-capturing construction schemes then MA,,, (Kz) fails. We present another

proof viaTheorem 3.1 and the following well known fact.
Lemma 3.6. Assume MA,, . There are no Suslin trees.

Proof. Let (S, <) be a tree of height w; such that for every ¢ € S and every o < w, there is some
s € S with Lev(s) > o and ¢t < s. Every Suslin tree contains a Suslin tree with this property.
Let P = (S,>). We show that forcing with P adds an uncountable chain to S. Define
Do = {t € S : Lev(t) > a}. The property of S shows that %, is dense for every a < wj.
Therefore, any {Z, : o < w }-generic filter G will be an uncoutable chain of S.
If S is a Suslin tree, then P has the ccc, otherwise S contains an uncountable antichain, and

MA,, forces an uncountable chain for S. O]

Let us go into the idea behind the proof of Theorem 3.1 before we go into the details.
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3.1.1 Outline of the construction

We start with F, a 3-capturing construction scheme, and we want to construct S C {0, 1}
a Suslin tree. We do this by recursively defining finite approximations on {0,1}f for every
FerF.

More precisely; for every F' € F and every a € F, we construct functions f£, g& : F — {0,1}
such that

L fla=¢5la
2. fi(a)=0,g5(a)=1.
We want the functions to be isomorphic and coherent:
3. f B,F € Fi, a € Eand a = pp r() then, f§ = op r(fy) and 6§ = vp,r(g5)-
4. If E C F, then for every a € E we have

fa Cfd and gi Cgy

We can now define ho = Upcracrfo | @ = Upcracrda | @, and then (hq @ a < w) is
such that

ho | F=fI 1 (anF)=gl | (anF) for every F € F with a € F (3.1)

Note that hy : @ — {0,1} and is well defined by the properties of a construction scheme
(Definition 1.32 and Lemma 1.33), and (1)—(4) above. Now let

S=(ha0:6<a<w) (3.2)

then S is our candidate for Suslin tree.
To recall, we have to construct (fI, g% : o € F, F € F) with properties (1)-(4), and show

that S defined as above is a Suslin tree. We do that now.

3.1.2 Proof of Theorem 3.1

We construct (f£, g : a € F, F € F) by recursion on F.

For F' € Fy we have F = {a} and we let f£'(a) =0 and g% (a) = 1.

Let F' € Fj, with k > 0, R(F') = R. Suppose F = UK% F;, the canonical decomposition of
F, and for all i < ng, f£i gk are defined for all a € F; satisfying (1)-(4). Let ¢; : Fy — F; be

the increasing bijection between Fy and Fj.
For a € R, let fF'=J;_,,, 0i(fL°) and g = U, ,,, ©i(9E").
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For § € Fy \ R and § = ¢y;(«) for some a € Fy let

F=Ueatdu U e

j<2i 2i<j<ny,

F F F

g =Jeiffu U eied
7<2i 2i<j<nyg

For 0 € Fy;11 \ R and 0 = ¢9;11(«) for some a € Fy let

F=U weu U e

j<2i+1 2i+1<j<ng

F_ R R

g = eeu J e
7<2i+1 2i+1<j<ny

By the construction it follows that for every i < nj and every o € Fj, ffi C ff and gfi c gF.
Also,if FF € Fi,, F = Ui<nk F;,and £ =
E respectively. Then, by hypothesis, if o € E; and & = ¢g, F, (o) we have fgl = @Ezpl(ffl),

i<n,, i are the canonical decompositions of F' and
and the same for ¢ and g%'. Then for o € E, a = opr we have fI' = pp p(fF) and
gt = pE r(gF). So conditions (1)—(4) are satisfied. This finishes the recursion.

Define hy, : o — {0,1} by hy = UFE]—',aEF fo la= UFeF,anga I'a. Then (hy : a0 < wq)
satisfies (3.1). So we are in position to define S C 2“1 as in (3.2). Now S is a Suslin tree.

Claim 3.7. If F is a 3-capturing construction scheme, then S is a Suslin tree.

Proof. 1t is clear that S has height w; since for every o < wy, hy € S. Next we see that S has
neither uncountable antichains not uncountable chains.

Let W = (hg [ 0a : 00 < a, a € T') C S with I' C w; uncountable.

There are « < fin I'" and F' € F such that F' captures o and . In particular 5 = ¢1(«a)
and then h, C hg which implies (ho [ o) £ (hg | d5). This implies S has no uncountable
antichains.

In particular, the levels of S are countable and we can find an uncountable I'y C I" such
that for every o < 8 in I'g, o < d3. Let ' € F, 3-capture I'yg. Thus there are ag < a1 < an
in g captured by F' = {J;_,, Fi. By equation (3.1) we have that hq, () = gk (ap) =1
and hq, (o) = fE2(ap) = 0 and since ag < a,, 00, then hq, L hq,. Thus S does not have

uncountable chains. O

We showed that S is a Suslin tree. This finishes the proof of Theorem 3.1 0

3.2 A Haudorff T-gap

In this section we construct a T-gap by recursion on F. The structure of the proof is similar

to the construction of a Suslin tree on the previous section. We will use F to recursively define
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finite approximations to our T-gap. After the construction is complete we will use 3-capturing

to show it has the T-gap property.

Theorem 3.3. Assume there is a 3-capturing Construction Scheme. Then there is a (w1,w1)-
gap that is a T-gap and so, in particular there is (w1,w1)-gap that can be filled in a forcing

extension over a partially ordered set satisfying the countable chain condition.

Proof of Theorem 3.3. Let F be a 3-capturing construction scheme. We define a sequence

(Ni)k<w in w and (af,br : a € F) such that

a) Yo
1. For F € Fj and every a € F, af,bE' € N}, and af NbE = ().

2. For E,F € F, if « € E and @ = ¢ p(a) then

3. f EC Fwith Ec€ F, FeF,and [l <k, then
(a) For every a € E, al NN, =af and b N N, = b%.
(b) For every a < 8 in E, ag\NlCag andbg\Nleg.

(c) For every a, € E, afn bg C N,

The construction is as follows. For F' € Fy we have F = {a} for some a < wy, let af = {0}
and bY = {1} and Ny = 2.
Suppose that (a2, b2 : o € B, E € Fj,1 < k) satisfies (1)~(3). For F € Fy, if

[einge?

F = U F; is the canonical decomposition of F'.

i<n
We define (af,bf : a € F) as follows
For a € R(F) let af = a0 and bZ = bL0.
For 0 € Fy; \ R(F) and § = pg;(a) for some o € Fy let

a? = a{j@ U{Ng-1}

blgF = bgb U {Nk’—l + 1}

For § € Fyiy1 \ R(F) and 6 = p9;+1(a) for some a € Fj let

a? = ago U {Nkfl + 1}
bE = bl U (N1}
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Finally let Ny = Ng_1 + 2.

It is clear that al,bf C Nj and af NbL = 0 so (1) holds. If E € Fj with canonical

[e'Rig 0%

decomposition E = J E;, then for every o € E; and & = ¢, ,(«), we have

<N

af" = agi and bfi = bgi
and then (2) holds as well. Notice that af N N,_; = afi for some i < ny, and for every
a < B € F; we have al \ Nj_; = ag \ Nj_1 and the same for bZ. So property (3) holds. This
finishes the recursion.

For a < wy let

Ao = U ag ba = U b(};

FEF,aeF FEF,aeF

Conditions (1)—(3) imply that for every o < wy, an Nby = 0, for every a < 8, if k < w is
large enough (meaning there is F' € Fj, with o, 8 € F) then a, \ N C ag and b, \ N C bg.
Also, for o, 8 < w1 and k < w large enough aq Nbg C Ni. This shows that (aqa,ba)a<w, is &
pre-gap.

We use Definition 3.2 to see that (aq,ba)a<w, is a T-gap. In orther words we want to show
that, given I' C w; uncountable we can find o; < f; in I for ¢ = 0,1, such that aq, N bg, # 0,
and aq, C ag,, ba, C bg,.

Let I' C w; uncountable. Since F is 3-capturing there is F' € Fi and § < & < & in T
captured by F'ie, & € F; \ R(F') for i < 3 and &; = ¢;(&) for j = 1,2. By the construction of
ag;,be;, 1 =0,1,2, we have that ag, N N}, = ag and be, N N, = bg. This and (b) of (3) give

ag, Nbe, # 0 (3.3)
ag, C ag, and b&) C b§2 (34)

Thus we can take a; = & for i = 0,1 and fy = & and B; = &. And so equation (3.3) implies
(@asba)a<w, 1s a gap and by (3.4) it is a T-gap as we wanted to see. O

3.3 Using Partitions to Capture

It turns out that we can improve the results in the previous sections if we use the partition
version of capturing. We construct first a Suslin Tree, however instead of needing 3-capturing
as in the previous section, all we need now is 2—ﬁ—capturing. We also present analogous results
for T-gaps, given a Q—ﬁ—capturing construction scheme we can construct a T-gap.

Let us recall the definition of partition capturing before we apply it.

Definition 3.8. Let w = |J,,, P2 be a partition of w into infinite components and let P =
(P : £ < w). Suppose (my,nk,rx) forms a type such that for every ¢ < w, and every r < w

there are infinitely many k’s in P, with r, = r. Then we say (my, ng, 7 ) forms a ﬁ—type.
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Definition 3.9. Let F be a construction scheme with type (mg, ng, ri )i, and 2 > n. We say F
is n-P- capturing if (my, ng, 7 )x forms a P-type, and for every uncountable A-system (S¢)e<wn
of finite subsets of w; with root s, and every ¢ < w, there are {y < ... < &,-1 < w1, k € Py and

F € Fj, with canonical decomposition F' = | J F;, such that

<Ny
s C R(F)
for every i <n, s¢ \s C F;\ R(F),

for every i <mn, ¢i(sg,) = S
We say F is ﬁ-captum’ng if Fis n—ﬁ-capturing for every n < w.
We construct first a Suslin tree.

Theorem 3.10. Let w = {J,, P, be a partition of w into infinite pieces, and let P= (Pp: <

w). Assume there is a Construction Scheme that is Q—ﬁ—capturing, then there is a Suslin tree.

Proof. We construct (f,gF : o € F, F € F) as above.
For F' € Fy we have F = {a} and we let ff'(a) =0 and g% (a) = 1.
Let k € Py, and F € Fj with k > 0. Suppose F = Ui<nk
of F, and for all i < ny, fIi gli are defined for all a € F; satisfying (1)—(4) from Theorem 3.1.

F;, the canonical decomposition
Let ¢; : Fy — F; be the increasing bijection between Fy and Fj.
For o € R(F), let f5 = U, ¢i(fa°) and g5 = U<, #i(95°)-
If £ is even then

If 6 € F5 \ R and § = @9;(«) for some a € Fy let

=Uetmu U e

j<2i 2icj<ny
g =UeauHu U el
j<2i 2i<j<ny

For § € Fyiy1 \ R and 6 = p9;+1(a) for some o € Fj let

= w@Hu U e

j<2i+1 2i+1<j<ng
F _ (~Fo ( £Fo
9s = U @](ga )U U 90]( a )
§<2i+1 2i+1<j<ny

Otherwise, ¢ is odd, then,
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If 6 € F; \ R and 0 = ¢;(«) for some a € Fy let

F=Uetu U eied)

j<i i<j<ns

F Fi F{

g =UJeu U eilel)
J<i 1<j<ng

Now, instead of using equation (3.1) to define hy : v — 2. We let hy : o+ 1 — 2.
ha = fa | (a+1) for every F' € F with a € F.

Now we let
S={hald:0<a+1<w}

This defines S. To see that S is a Suslin tree we proceed as in Theorem 3.1.

Let W = (hq | 00 : 60 < a+ 1,a € T'), with I' C w; uncountable, be an uncountable
subset of S. We use 2—ﬁ—capturing to find ap < ap in I' and F € Fi with k& € Py, such
that F' captures ap and «;. Since ¢ = 1 is odd, we have h,, C hq, by definition therefore
(hao [5%) ya (ha1 [ 5041)-

Thus S has no uncountable antichains, therefore the levels of S are countable. This means
we can assume that o < dg for all @ < 8 in I'. Also, without loss of generality, we can assume
that o = o+ 1 for every a € I'. Indeed suppose d, < o + 1 for every a € T', by the Pressing
Down Lemma we can find an uncountable I'g C I' such that ¢, = dg for all o, 8 € I'g. But then
we can find a < 8 in I'g such that a > dg, which is a contradiction.

So we assume 6, = a + 1 for every a € I'. Now we use Z—ﬁ—capturing to find & < &
in I and F € Fi with kK € P,, such that F captures & < &;. Since ¢ = 2 is even, then we
have hg, (&) = fg(fo) = 0, and h¢, (&) = fg(&)) = gg)o (o) = 1. Therefore W cannot be an

uncountable chain.
This finishes the proof. O

As a Corollary we also have the following result.

Corollary 3.11. Assume MA,,. There are no Q-ﬁ-captum'ng construction schemes for any

partition P.
Now we show how to construct Hausdorff T-gaps from a Q—ﬁ—capturing construction scheme.

Theorem 3.12. Let w = U, Pr be a partition of w into infinite components, and set P =
(P, :n < w). Assume there is a Construction Scheme that is 2-P-capturing, then there is a

T-gap.

Proof. We follow the previous construction. For F' € Fy we have F' = {a} for some a < wy, let
al = {0} and b% = {1} and Ny = 2.
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Suppose that (aZ,bE : o € E,E € F) for | < k satisfies (1)—(3) from the proof of Theo-

(e indeY

rem 3.3. Take ¢ < w such that k € P, and let F' € Fj, be given, if
F = U F; is the canonical decomposition of F'.
<n
If £ is even, define (a,b! : a € F) as follows

For o € R(F) let af = af? and bf = vfo.

For 0 € Fy; \ R(F) and § = p9;(a) for some o € Fy let

a? = a§0 U{Ng_1}

b5 = b5 U {Nj-1 + 1}

For 0 € Fyiy1 \ R(F) and § = p9;41(a) for some o € Fy let
af =al U{N_ + 1}
bE = bl U (N1}

Otherwise, ¢ is odd, and we define (af,bX : o € F) as

a) o

For a € R(F) let al = ald and bf = bEo.

For 0 € F; \ R(F) and 0 = ¢;(«) for some a € Fy let

a¥ = al* U{N,_1}

bE = bl U{N_ 4+ 1)

Finally let Ny = Ng_1 + 2.

Given I' C wq uncountable. We can find §y < & in I’ and F' € Fj, with k € P, such that F
captures & and &;. Since £ = 2 is even, we have Np_1 € ag) N bg. Thus (aq,bs 1 @ < wy) is a
gap.

On the other hand, we can also find ap < a1 in I' and F € F;, with k& € P; such that F
captures o and «;. Then, since ¢ = 1 is odd, we have a,, C aq, and by, C by,. Therefore

(aqybo : wi) is a T-gap. O

3.4 Hausdorff T-gaps versus Hausdorft S-gaps

Recall that an S-gap is a destructible gap, i.e, a gap which can be split by a ccc forcing. The

purpose of this Section is to prove the following.
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Theorem 3.5. There is a model in which there is an S-gap but which does not have any T-gaps.

Proof. We start with a ground model in which GCH holds and has an S-gap.
Let (aq,ba)a<w: be a gap with the property that ag ¢ a, for any o < f < wy. It is clear
that every gap is equivalent to a gap with this property. Let A = (aq)a<w, and consider the

following forcing notion

Pa={pelA]*:(Ve#yecp)zgyandy¢ z}

ordered by reversed inclusion.

Claim 3.13. Pp s ccc.

Proof. Let (pa)a<w,- Applying the A-system Lemma we can assume that the p,’s are a disjoint
with [pa| = n and py = (Ta,i)i<n for every a < w; where we preserved the natural order in A.
This implies that x5 ; ¢ x4, for @ < 8 and ¢,j < n.

Let M be a countable elementary submodel of H.+ and v = w; N M.

Take 8 > v and fix k < w such that

xg; Nk ¢ xy; Vi<n. (3.5)

Consider I' = {a < wy 1 2o Nk =25, Nk Vi <n}, thenT' € M and € I'. Therefore I'
is uncountable. Take « € M N T, by (3.5)

Tai € Tyi Vi<n

and po, Up, € Pa witness po £ ps. O

We will force a model where MA,,, holds for a forcing of the form P . First, fix a bijective
mapping 7 : we — we X we where 7(a) = (8,7) with 8 < «. This is the usual book keeping
mapping. Suppose we have Py = (P,, Qu:a< A) a finite support iteration with

P, IF “Qq = P, if A is a gap”.

for some A € VP, Then, in VP there are Ry many names for gaps (by GCH), and we can fix
a well-ordering of them. If 7()\) = (8,7), let A be the 4" name for a gap in VF5. If A is a gap
in VP then let Q) = P,.

Claim 3.14. The finite support iteration P, is ccc and forces MA,, for orderings of the form
Pa.

Proof. Let A and D = (D, : @ < w1) be a gap and a collection of dense sets of Pi in V[Gy,]
respectively. Then, there is A < wsy such that both A and D are in V[G,]. Since A is a gap in
V[G.,] then is a gap in V[G,] and there is € > X such that 7(¢) = (),v) and the 4** name in
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VP> is a name for A. It follows that there is a D-generic filter in V[Geia] C V|G, and the
proof is finished. 0

This applied to a gap (aa,ba)a<w, forces I' C w; uncountable without the property in
Definition 3.3. This shows that there are no T-gaps. Thus, the proof is finished once we show
the following.

Claim 3.15. Forcing with PA preserves S-gaps.

Proof. Suppose that one P kills an S-gap (aq, ba)a<w; -
Then P4 forces I' C w; uncountable without property (3) of Proposition 1.13 i.e, for every
a<p
Pa lFa,8 €T = (aa Nbg) U (agNby) # 0

Since I' is uncountable we can find (in the ground model) T' C w; uncountable and (p, :
a €T') C Pa such that
palFael

In particular, we have
Va<pBerl ((aambg)u(aﬁmba):®:>pQUpB¢PA) (3.6)

We may assume that the p,’s are disjoint and that they all have some fixed size n and
Pa = (Za,i)i<n preserves the natural order in A.

Choose a countable elementary sub-model M of H.+ containing all these objects and let
~v =min(T"\ M).

Since (aq, ba)a<w, 1S an S-gap, the elementarity of M gives us the existence of a § € I" above
~ such that

agNby =0 and ay,Nbg =10 (3.7)

Choose k < w such that
ay\ k Cagand b, \ k C bg (3.8)
Veep, VYyeps yNnkZxNk (3.9)

Let s=agNk,t=>bgNk and
IF'n={ael:a.Nk=5s baNk=t zq;Nk=2g;Nk(i <n)}

Then I'y € M and € I’y \ M so I'y is an uncountable subset of I'. Since (aq,ba)a<w, IS a
S-gap there must exist a € I'g N M such that

anNbg =10 agMNby =0 (3.10)
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Combining equations (3.7),(3.8) and (3.10) we obtain that
aq Nby =10 ayNby =0 (3.11)
Form the fact that o € Ty and by (3.9) we conclude that

Veepy, Yyep, yZx (3.12)

Thus p, U py € Py, contradicting (3.6). O

The previous claim also implies that if P, preserves S-gaps, then so does Py11. Suppose
now P, preserves S-gaps for every a < A < we, with A limit. If Py kills an S-gap, applying
the A-system lemma (or a counting argument in case « has countable cofinality) we find n < A
such that P, kills an S-gap. Contradiction, thus Py also preserves S-gaps.

This shows that V[G,,,| contains an S-gap, since V' does and P,,, preserves it, and there are
no T-gaps in V[G,,,| which finish the proof. O

Remark 3.1. The method above answers a particular case of Problem 59 of [BNC15]. Partic-

ularly, it produces a model of with no Suslin towers but destructible gaps.

It can be seen that the model V[G,,] also contains Suslin trees and it has no 3-capturing

construction schemes.



Chapter 4
Constructions of Banach spaces

The purpose of this Chapter is to apply the construction scheme to the theory of nonseparable
Banach spaces inspired by the forcing constructions of Bell, Ginsburg and Todorcevi¢ [BGT82],
and Lépez-Abadand Todorcevié [LAT11]. The class of nonseparable Banach spaces exhibit
phenomena which are not present in the more studied class of separable Banach spaces. Some
of the most striking differences appear on J. Lépez-Abadand S. Todoréevi¢[LAT11] where they
developed forcing constructions of Banach spaces via finite-dimensional approximations. Here

are two examples from [LAT11]

Theorem 4.1 (Theorem 4.5 of [LAT11]). For every e > 0 rational, there is a poset P. which
forces a Banach space Ve with an uncountable e-biorthogonal system and such that for every

0< 1< ﬁe, Y- has no uncountable T-biorthogonal system.

Theorem 4.2 (Theorem 6.4 of [LAT11]). For every constant K > 1 there is a poset P which
forces a Banach space Vi with an uncountable K -basis yet for every 1 < K' < K, Yk has no

uncountable K'-basic sequences.

Recall that none of these two phenomena can happen in the class of separable Banach spaces
when, of course, we replace ‘uncountable’ by ‘infinite’ since every infinite dimensional space has
a basic sequence, hence it has a biorthogonal system. Also, the previous spaces, or other spaces

with the same properties cannot exists on a model of PFA by the following result of Todorcevic.

Theorem 4.3 (Todorcevié [Tod06]). Assume PFA. Every Banach space X of density Xy has

an uncountable Biorthogonal System.

We use capturing construction schemes to build norming sets and define nonseparable Ba-

nach spaces. The main results of this Chapter are the following Theorems.

Theorem 4.4. Assume there is a capturing construction scheme F. Then for every e € (0,1)N

Q, there is a Banach space X. with an uncountable e-biorthogonal system but no uncountable

_&

T-biorthogonal system for every 0 < 7 < 1%.

65
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Theorem 4.5. Assume there is a capturing construction scheme F. Then for every constant
K > 1, there is a Banach space Xi with a K-basis of length wy but no uncountable K'-basic
sequence for every 1 < K' < K.

In each case the construction is based on a single rule of multiple amalgamation of a family
of finite-dimensional Banach spaces indexed by F. This adds not only to the clarity over the
corresponding forcing constructions but it also gives us Banach spaces that could be further
easily analyzed. In fact neither the construction nor the analysis of the corresponding examples
require any expertise outside the Banach space geometry.

It is interesting to compare our examples with the corresponding examples in [LAT11].
Given an uncountable sequence of forcing conditions, take an uncountable A-subsequence where
all conditions are isomorphic and find a condition which amalgamates finitely many of these
forcing the desired inequality. Thus, the use of forcing allows us to amalgamate a posteriori
since the generic filter G takes care of all the possible A-systems whose roots belong to G .
However in our recursive construction the amalgamations must be done a priori which limits
the class of possible amalgamations. In fact since we do a single amalgamation at any given
level of F, our spaces tend to be considerably more homogeneous and therefore much easier to
analyze.

This Chapter is structured in the following way: We start with a result of Todorcevié¢ [Tod17]
that illustrates how capturing construction schemes can be used to construct Banach spaces.
The use of a ﬁ—capturing construction scheme is used to build a C'(K) Banach space that has
no uncountable biorthogonal systems.

On Section 4.2 we give an outline of the constructions of A, and Xk . The aim is to point out
how the construction of Banach spaces with properties independent of ZFC can be systematize,
and the Set Theory necessary to carry out this constructions is not a lot.

In Section 4.3 we give a proof of Theorem 4.4 and study some of the geometric properties
of X..

We finish the Chapter with Section 4.4, where we prove Theorem 4.5.

4.1 First Applications to Banach spaces

We want to present the first application of capturing construction schemes to Banach spaces
due to Todorcevié¢ [Tod17]. It illustrates the method that we will use to prove Theorem 4.4 and
Theorem 4.5. Our aim is to convince the reader of the flexibility of this method to construct
nonseparable Banach spaces.

The following concept was introduced by Rolewicz [Rol78]

Definition 4.6. Let C' C X be nonempty, convex, and closed. We say C' is a support set if for
every point x € C thereisa x* € X* such that 2*(z) = inf{z*(y) : y € C} < sup{z*(z) : z € C'}.

There is a relation between support set and uncountable biorthogonal systems. To make

this relation precise we need a new definition.
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Definition 4.7. Let X be a Banach space, a sequence (Ya, ¥ )a<w, i called a semibiorthogonal

system if the following conditions hold:

1. For every a < w1, ¥ (ya) = 1,
2. for every a < 8 < wi, yg(ya) =0, and

3. for every a < 8 < wy, y4(ys) > 0.
We have the following relation.

Theorem 4.8 (Borwein and Vanderwerff [BV96]). Let X be a Banach space, then X has a

support set if and only if it has an uncountable semi-biorthogonal system.

Theorem 4.9 (Todoréevi¢ [Tod17]). Assume there is a P-capturing construction scheme F.
There is a compact space K such that C(K) does not have uncountable semi-biorthogonal se-

quences. In particular C(K) contains no supported closed convex subsets.

Proof. Fix F, a ﬁ—capturing construction scheme. We construct K as a subset of {0,1}*1 and
endow K with the induced product topology. For every F € F we define Kr C {0,1} and
(fF, gF . a € F) with the following properties:

(i) For a € F we have f' Ja=g% 1 a, ff'(a) =0, and ¢f'(a) =1,

1. For F, E € F the spaces Kr and Kg are homeomorphic via the mapping f € Kp —
fo 90;“1]5‘7 and

2. For I, E € F with E C F we have K C Kp.

Now we define K by recursion on F' € F. For a < w; and F = {a} € Fy, we define
K{ay = {95}, Where fF(a) =0 and g£(a) = 1.

Suppose now F' € Fj, with canonical decomposition F' = | F; and we have constructed

<N
={fF gl . a € F;} for i < ny, so they satisfy (i)-(iii).

Suppose k € P, with ni < 3¢. Then we let Kr contain the following functions.

1. For a € Fpy, define

'f‘ Z 901 F\FO)

0<i<ng

Y=gl ) @il 1 (Fi\ Ry

0<i<ng

2. For o € F; \ R(F) with 0 <i < ng, let 6 € Fy \ R(F) with ¢;() = «, then

fE=I I+ Y () 1 (F\ Fo)

0<]<nk

g =10 + gl + Z @i (f30) 1 (Fy \ Fo)
0<j<ny
T
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Suppose otherwise k € Py with ny > 3¢. Then we let K contain the following functions.

1. For a € Fp, define

L= Y @R (RN R

0<i<nk

Ni=gn+ Y wilgl® 1(F\ Fo)

0<i<nyg

2. For a € F; \ R(F) with 0 < i <nj and i # 2¢, let 6 € Fy \ R(F') with ¢;() = «, then

FE=f0 i+ Y (£ 1 (F\ Fo)
0<jj;ink

gf =f gl + Y (£ 1 (F\ Fo)
0<]<7’Lk
T

3. For a € Fy, \ R(F), let 0 € Fy \ R(F) with p9y(d) = «, then

15 =P + el +2;( o () T (5 \ F0)) + (pi41(95) | (F} \ F)) )
+fa ;Z@j(gg‘; [ (Fj\ Fo)
=45 +s01] +Z;( o (SO T (5 \ Fo)) + (p2i41(9]) | (B3 \ ) )
+ gat + Z;Zsoj 3 (F5\ Fo)

It is clear by the construction that Kr = {ff ¢gf' : a € F} defined as above satisfy
conditions (i)—(#i¢). This finishes the construction of K.
Suppose C(K) has an uncountable semi-biorthogonal sequence (Ya, fla)a<w, - We can assume

the y,’s are normalized. Then p, are operators on C(K) such that:

1. /yadua =1 for every a < wy,

2. /yaduﬁ = 0 for every a < 8 < w1, and

3. /ygdua >0 for every a < f < wy.

Lemma 4.10. There is I' C w1 uncountable and n < w, such that for every ag < ...as, in I’

we have:

Z Yo; + MYeun, + Z Yo

H 2n—1
1=2n-+1
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Proof. Let N < w and I' C w; uncountable such that

sup [|pall < N
acl’
Then
2n—1 2n—1
H St 35 w2 P [ vt 3 )
1=2n+1 1=2n+1
2n—1 n
/ Zyaz dlu’OQn + N/yOCQndlu’OéQn / Z yaz dIuOCQn
1=2n+1
n
>0+ =+0=—
> -l- N + N
Because of the properties of pq,,. Take n > 4N and we get the result. O

We finish the proof by showing that

Lemma 4.11. For every normalized uncountable sequence (yq)acr in C(K) andn < w. There

are ag < ... < asy n I’ such that

Z Yai T MWYas, + Z Ya;

1=2n-+1

H 2n—1

Let 2 be the algebra of all functions in C(K) generated by the constant function, and the
functions of the form d4(h) = h(a), where h € K and a < wy. Then & is dense in C'(K) by the
Stone-Weierestrass Theorem. For o € I let x, € 2 normalized with rational coefficients such

that
1
|Za = Yall < —

4n
Then for every ag < ... < ag, in I' we have
2n—1 2n—1
H S vt et 30 o= 3wt nrent 3 a5 b -+, 2
i=2n+1 1=2n+1 1<3n
i£2n
2n—1 n n
<||— Zxa1+nxa2n+ Z Tay +E+T
1=2n+1
2n—1
=||— Z Ta; + NTas, + Z To, || +1
i=2n+1
Thus is enough to show:

Z To; + NTay, + Z Toy,

H 2n—1
1=2n+1
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To see this is true, consider (supp(zq) : @ < wy). By going to an uncountable subsequence,

we can assume that:
1. The sequence (supp(zq) : @ < wy) forms an increasing A-System and

2. For every o < 3, 4 is isomorphic to zg. This means that, if ¢, : supp(ze) — supp(zg)

is the increasing bijection. Then x5 = x, o gogé

Since F is a ﬁ—capturing construction scheme, we can find k € P, F' € Fj, and opp < ... <

a3pn, < wi such that F' captures (supp(zq,) : ¢ < 3ngp). Let

2no—1 3no
W = — g Ta, + N0Tag,, + g T,
i=0 i=2ng+1

To finish the proof we have to show that |w(h)| < 2 for every h € K. Since supp(w) C F' it is
enough to show that |w(h) < 2 for every h € Kp. Note that F' € Fy, k € P,,, and ng > 3ng
since F' captured the A-System of lenght 3ng. Thus, going back to the corresponding definitions
of h € K we have that, if ff' € Kp is of the form 1 then

W(fo)" = (=210 + no + 10)ao (f1°) = 0
the case for g is analogous. If fI" € Kp is of the form 3, then
W(fa) = (=10 +10)aaq (f5°) + (=10 + 10)ay (95°) = 0
If fF' € Kp is of the form 2, then w(f") = 0. Finally for g, € Kr of the form 2, then
W (ga)] = lao (f5° — g5°)] < 2

since x4, has norm 1. This finishes the proof.

4.2 Outline of the proofs

The construction of the Banach spaces X. and Xk will follow an abstract approach for producing

nonseparable Banach structures.

We start with a capturing construction scheme F. First, we construct (recursively) a family
H = Uper Hr where Hp are functions f : F — [0,1] N Q. For X. we will have Hp = {h{ :

a € F}. To guarantee nonseparability we want to have the following condition

REta=0  hl(a)=1 (4.1)
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The role of H is to be a norming set, for that we need the following coherence conditions

VF,EcF ifECFthen hf |E=hf VacF (4.2)
VF,Ee€F if ECFthen f|FEe¢€con(tHg) VfeHr (4.3)

Let Hi = U<y rer, HF- Suppose Hy has been defined and F' € F. Let F' = F; the the
canonical decomposition of F. We will define 1z by amalgamating the elements of H g, (i < ny)
in such a way that (4.1), (4.2) and (4.3) holds for A; and (4.3) for Xk.

This concludes the construction of H. Next, we will define || - || in coo(w1)

1<np

]l = max{[{f, z)| : f € H} (4.4)

Note that || - || is well defined by (4.2) and (4.3) and by (4.1) we have ||z|| = 0 if and only if
x = 0 (this for the construction of A, for X'x the vectors e, € H for every a < wy) so it defines
a norm on coo(w1). The respective Banach space X’ will be the completion of (coo(w1), | - ||)-

To prove that X has indeed the properties that we want we will use the capturing of
F. Arguing by contradiction we take an uncountable sequence (Yo )a<w, in X with a certain
property. We show (following [LAT11]) that there is an inequality that uncountably many y,’s
satisfy.

Take (zq)a<w, in coo(wi, Q) approximating the y,’s and apply the A-System lemma and a
counting argument (this is why we take Q instead of R) to obtain I' C w; uncountable such
that

1. (supp(zq) : @ € T') forms a A-System and

2. the z,’s are “isomorphic” in some manner.

Finding F' € F capturing enough x,’s we can construct vectors that contradict the inequal-

ity.

4.3 Proof of Theorem 4.4

Let us recall the following result.

Theorem 4.4. Assume there is a capturing construction scheme F. Then for every e € (0,1)N
Q, there is a Banach space X. with an uncountable e-biorthogonal system but no uncountable

T-biorthogonal system for every 0 <1 < 5.

Let F be a capturing construction scheme and 0 < € < 1 rational. We construct H as
outlined in 4.2.

We start with H;, which is formed by hif‘} taking values in {a} and sending o +— 1.

Suppose Hj, has been built satisfying (4.1), (4.2) and (4.3). Let I € 7y, and F =, Fi
the canonical decomposition of F. Then, we let Hr = {hl : a € F} where h% is define in the

following way
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1. For a € R, define hf := hf® + > 0<i<ny, i(hEo) 1 (Fy \ Fp).

2. For a € Fy \ R, define

hE =0l e > (—D)iei(hE) | (F\ Fy).

2<i<ny,

3. For 6 € F1 \ R, and o € Fy \ R with ¢;(a) =6, define

he =) +e > (=1)Mei(rl2) 1 (Fi\ ).

2<i<ny

4. For o € Fj \ R with 2 < j < ny, define hf = hl?.

It is clear that Hy,q satisfies (4.1) and (4.2). Note that if E € F is contained in F and
o € F, there is f € Hp such that kX (y) equals either f(v) or ef(y) for every v € E. This
shows that (4.3) holds for Hj,1. The same observation shows

hE(eg)] < e (4.5)

for all @ # §in F.

This finishes the construction of H.

Define the norm || - ||z as in (4.4) and let A; be the completion of (cop(w1), || - ||¢)-

We check that A is as we wanted. Define h,, to be the union of all (hf : F' € F) which is well
defined by (4.2). By (4.5) the sequence (eq, ha)a<w, forms an un uncountable e-biorthogonal
system.

Suppose (Yo Ya)a<w; 18 a T-biorthogonal system for 0 < 7 < ;5. We can assume that the

Yo s are normalized.

Lemma 4.12. There is I' C wy uncountable and § > 0 such that, for every n,m < w with

% =¢ and every ag < ... < aop+1 we have,
1 n
(yao - yal) - E Z(yam - ya2i+1) > 4 (46)
i=1 c

Proof. Let N < w and I' C w; uncountable such that
sup [lyall < N
acl’

Then
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Taking § = & (1 — 7(1 4+ 22)) = (1 — 7££) > 0 we obtain the result. O

e
Theorem 4.4 follows if we show that

Lemma 4.13. For every normalized (Yo)acr in Xz, there is m,n < w with % =¢c and ag <
.o < aon+1 such that

1 n
(yao - yal) - E Z(yam‘ - ya2i+1)

i=1

<9

€

Proof. Let m and n, big enough so that 1/m < §/2 and m/2n = ¢.
Let z4 € coo(wi, Q) for a € I' normalized such that

||ya - ifaHg < m for every o € TI.
Note that
1 n
(Yao = Yau) — m Z(yam - ya2¢+1) <
i=1 R
1 n 2n+1
< (33040 - xoq) - E Z(mazi - xa2i+1) + Z Hya - xaHé
i=1 . i=0
1 )
< |[(Tag = Tay) — m Z(f’jam‘ — Tagi)|| T 5
1=1 e
thus, it is enough to find ag < a1 < ... < agn41 in I' such that
1< B
($040 - xOél) - E Z(xOéZi - ‘ra2i+1) < 5 (47)
i=1 .

Apply the A-System lemma and a counting argument to find I'y C I uncountable such that

1. Let D, = supp(zq), then the collection (D, : a € I'y) form a A-System with |D,| =
|Dg| = d for every a, € I'y.

2. For o, B € I'g and ¢4 3 : Do — Dg an increasing bijection then x5 = ¢4 g(2q).

Since F is capturing there is F' € F and some g < ... < agn41 in g, such that F' captures
(Dq, @@ < 2n 4+ 1). This means that F' € Fj, for some k < w (it will have to be such that

ng > 2n+ 1), and for F = F; is the canonical decomposition of F' we have

i<np

D,, CF;, i<2n+1

(4.8)

Let
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n

1
w = (3704) - xOél) - a Z(xa% - wa2i+1)
=1

Note that w | R(F) is identically zero by (4.8). We show that ||w| < §/2. Let f € Hp.
If f is of the form (1) it is clear that (f,w) = 0.
If f is of the form (2) then f = h% for some o € F' and

n

(fr0) = i (@ag) = = (e (@ay) + B (Tag)) = b (@ag) (1 == ) = 0
=2

because the amalgamation for f nullifies the term in o and changes the sign of the other odd
terms.
If f is of the form (3) then

n

() = ~hE (o) = ST (R ) + B (0,)) = E () (e = 1) =0
=2

because the amalgamation for f nullifies the term in «g and changes the sign the other even

terms
Finally if f is of the form (4) then [(f, w)| = |%<h§j,<paj (2))] < X < §/2 as we wanted to
show. Thus, w witnesses (4.7) contradicting Lemma 4.12 and finishing the proof. O

4.3.1 Some geometric properties of the space X.

We study other properties of the space X.. Recall that a Banach space has the Mazur Inter-
section Property if every closed convex subset is the intersection of closed balls. The following

properties are also relevant to the geometry of a Banach space.

Definition 4.14. We say a Banach space X is polyhedral if for every finite dimensional V C &,
the unit ball of V' has finitely many extremal points.

We say the norm of X' depends on finitely many coordinates if for every x € X'\ {0} there
is n > 0 and (h;)i<n C Sx+ such that for every w, z € nBx if hi(z + w) = hi(z + z) for every
i < n then ||z + w| = |z + 2|

For separable Banach spaces both properties agree.

Theorem 4.15 ([Fon90]). Let X be a separable Banach space. Then X has an equivalent norm
that makes it polyhedral if and only if X has an equivalent norm that depends on finitely many

coordinates.
We show the following.
Theorem 4.16. The space X. has the following properties:

1. X does not have the Mazur intersection property.
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2. X. is polyhedral.
3. || - |le depends only on finitely many coordinates.

Proof. We follow the proof of Theorem 4.14 of [LAT11]. Note that {hs}a<w, is @ norming set
of Bxs which is not dense on the sphere of X so &. does not have the Mazur intersection
property by a result of [GGST78].
Fix ¢ > 0 such that
p+e(l+p) <1

we will use the following

Claim 4.17. Let x € X, y € coo(w1) and F € F with supp(y) C F. If ||z — y|le < pllz||e then
the norm of x is determined by {hy : o € F'}.

Proof. Let x, y and F as above and let v ¢ I by the structure of h, we have

Ihy ()] < ellylle < (14wl

and then
|hy ()| < 7 — ylle + [y (y)] < |2l

O]

Suppose now V C A; is a finite dimensional subspace and fix a normalized basis (x;)i<p.
Now let y; € coo(w1, Q) such that ||z — y||. < n/n.

Then for every x =) ._ a;x; we have

<n

Z ;T — Z a;Y;

<n <n

< m?xaiz lzs — yille <nllz|
g

<n

If we take F' € F such that supp(y;) C F for every i < n, then {h, : « € F'} contains the
extreme points of By by Claim 4.17.

We show || - || depends on finitely many coordinates. Suppose z € X\ {0}. Find 0 < A < 1
such that Ay < 1/3 and y € coo(wi1, Q) such that ||z — yllc < Ap||z|le. If F € F is such that
supp(y) C F then n = Au||z||: and {hs : @ € F'} works. To see this note that for every w € A,
if |w||l- <n then ||z +w — y||lc < p||lz + wl||s and Claim 4.17 gives the result. O

4.4 Proof of Theorem 4.5

Out aim in this section is to construct a space that would prove Theorem 4.5
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Theorem 4.5. Assume there is a capturing construction scheme F. Then for every constant
K > 1, there is a Banach space Xi with a K-basis of length wy but no uncountable K'-basic
sequence for every 1 < K' < K.

Proof. The idea of the construction follows the outline of Section 4.2. We construct H by

recursion. For Xk the collection Hp will have the following closure property:
VfeHp, 6€F K Yf|6)eHr (4.9)

Let F be a capturing construction scheme and let K > 1. H; is the set of all functions of
the form K~ "e, for every a < w; and n < w.
Suppose Hj, has been constructed satisfying (4.9) and (4.3). Let F € F and F = F;

be the canonical decomposition of F. Then, we let Hr be the collection of functions of the

<N

following type:

1. ey, for a € F.
2. D icn, Pilf) I (Fi\ Fo) for every f € Hp,.

3. % (ZKW wi(f) T (FZ\F0)> [ 6 for every f € Hp,,everyd € Fandn=1,2...

It is clear that (4.9) and (4.3) holds for Hy;. This finishes the construction of H.
Define || - ||k as in (4.4) and let Xk be the completion of (coo(w1), | - ||x)-
We see that Xx is as we wanted. We first show that Xx has an uncountable K-basic

sequence. Let (€q)a<w, be the canonical unit vector basis.

Lemma 4.18. The vectors (eq)a<w, form a normalized K -basis of Xi. In particular Xi is

not separable.

Proof. 1t is clear that the e, ’s are normalized. To see they are a K-basic sequence let n < m <
w, a1 <...< oy <wp and (a;); € R™. Let F' € F such that oy € F for i =1,...,m. Take
0 = ape1 and f € Hp such that Z?:l ajeq, attains the norm at f, i.e,

n n
f(E aieai) = H E A€oy
i=1 =1

If f is of the form (1) then f [ 6 = Kg for some g € Hp and if f is of the form (2) then

f =g for some g € Hp. Thus,
n n m
Zaieai = |<fvza’ieo¢i> = ‘<f [5azaieai>|
=1 K i=1 i=1
n m
< K‘<9;Zai€ai> Zaieai
=1 i=1

by the closure property (4.9). O

K

<K

K



4.4. PROOF OF THEOREM 4.5

We proceed by contradiction.

7

Suppose now that (ya)a<w, is a K’-basic sequence with
1< K'< K. Fix K' < L < K and let n < w such that

1

K

1
+-<
n

1

- (4.10)

Take a normalized sequence (4 )a<w, in coo(wi, Q) such that

| = yallx < min{

1 L—-K'
4K'n’ 8(K')%n

} for every a < wy.

The following lemma plays the same role of Lemma 4.12 in Theorem 4.4

Lemma 4.19. For every a3 < ...

Proof. Note first that || Y | zq,

1=y |l < K’

<K'

<K’<

Now
n n
> Tl <D Yo
i=1 K i=1
n
<KD o
i=1
n
<K' Zxai
i=1
n
<K' Zxai
i=1
n
<K' Zxai
i=1

which is what we wanted to prove.

n
E To;
i=1

1
2K’

2n

2n

4K'n

K

K

K

>_

< o < W1
n 2n
D ST S
K i=1 i=n+1 K
- Z?gnH Za,; ||k > 1/2K’. Indeed, suppose otherwise then

n 2n
D o= D Y

i=1 i=n+1 K

n 2n 2n
Zxai_ Z Loy +K,ZH?J&¢ — Tyl
i=1 i=n+1 K i=1

n
+ Z ”xai - yaiHK
K =1

n
+ Z ||$Oéi - yai”K
=1

2n

+ 2K’ Z onéi - yaiHK
=1
L-K

AK'n——
AR e,

n 2n
E Toy — E Ty,
i=1

1=n-+1

+(L-K')

K

We want to use the capturing of F to contradict the lemma above.
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We proceed as before and find I' C w; uncountable such that

1. If Do = supp(z4), then the collection (D, : o € T') form a A-System with |D,| = [Dg| = d
for every a, B € T.

2. There is a function z : d — Q such that, if p, : d — D, is the unique order increasing

bijection, then z, = ¢ (2)

Since F is capturing, we can find F' € F and some a; < ... < @9, < wp in I’ such that F
captures (D,, : 1 < i < 2n). This means that F' € Fj, for some k < w (it will have to be such

that ng > 2n), and for F = F; is the canonical decomposition of F' we have

<N

Do, CF, i<2n
©i(D1) = Diy1, 1 <2n

Let . . o
v = Zxai and w = Zxai — Z Toy,
i=1 i=1 i=n+1

We show that ||v||x > L||w||kx. Since the z,,’s are normalized there is h € Hp, such that
|(h,za,)| = 1. Taking f =3, ©i(h) we get [(f,v)| =n. Thus [[v|[x > n.

Take now f € Hp.

If f is of the form (1) then, |(f,w)| =0

If f is of the form (2) then, f = (1/K)>_,_, ®i(h) | § for some § € F and h € Hp,. If
d € R(F) then |[(f,w)| = 0. Suppose ¢ € F; \ R(F) and n € Fy is such that ¢;(n) =0

Suppose j < n then

1 1
|mmm1g;wwm»+MMMwm|
<n—1
- K

n—1 n 1
#agllc = =+ 1< T < Lol

by (4.10).
Suppose now j > n. Then

i<n—1 n>i<j
1 .
< 2l = 1)+ (hywag) = (G =) = (b [ 7, 7a)
n—1  |zapllx +llzay [nllx _ n n_1
< <—+l<—-<=
=K K <1< < gl

If f is of the form (3) then |(f,w)| <1< £ +1<2 < 1|v|k.
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We conclude that |[w||x < |/v||x but this contradicts Lemma 4.19 and thus X is as we

wanted.
O
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