
Construction schemes and their applications

by

Fulgencio Lopez

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Mathematics

University of Toronto

c© Copyright 2018 by Fulgencio Lopez



ii



Abstract

Construction schemes and their applications

Fulgencio Lopez

Doctor of Philosophy

Graduate Department of Mathematics

University of Toronto

2018

We study capturing construction schemes, a new combinatorial tool introduced by Todorčević

to build uncountable structures. It consists of a ranked family of finite sets that provides a

framework to do recursive constructions of uncountable objects by working with finite amal-

gamations of finite isomorphic substructures, the uncountable substructures of the final object

can be further study using capturing.

In this Thesis we study the consistency of capturing construction schemes, and related defi-

nitions, we prove results of consistency, and give several applications of this tool both to infinite

combinatorics and Banach space theory. For example, we show weaker forms of capturing, such

as n-capturing, form a strict hierarchy which is related to the m-Knaster Hierarchy. We also

show how capturing construction schemes can be used in constructing Suslin trees and Haus-

dorff gaps of a special kind in an intuitive manner. And give some applications to the theory

of nonseparable Banach spaces.
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Chapter 1

Introduction and Preliminaries

The aim of this Thesis is to study a class of ranked families called Construction Schemes and

their applications. The motivation for this work is the application of set-theoretic and combi-

natorial methods to certain areas of Functional Analysis that deal with nonseparable normed

spaces. In mathematics when dealing with objects that have metric or topological structure

one usually puts a separability condition with the hope of avoiding pathologies. Thus, there is

a deep and rich theory of, say, separable Banach spaces while the theory of arbitrary Banach

spaces is much less explored. When one analyzes this from a set-theoretic point of view one

sees that, while the nonseparable theory is indeed much more influenced by additional axioms

of set theory, what remains unexplored is in fact finite-dimensional amalgamation techniques

that are much more relevant to the nonseparable than separable theory.

Construction schemes can be used to build complex structures in a recursive manner in such

a way that one has some control over the uncountable substructures, thus making them easier to

understand and to study. Construction schemes serve as unification of completeness theorems

from model theory (see [Kei70]) and Forcing from set theory ([Coh66]). My work follows that

of Todorčević [Tod17] where Construction Schemes are introduced and used to build several

Banach spaces relevant to certain well-known problems from nonseparable Functional Analysis.

It should be noted that similar spaces had previously been built using forcing by López-Abad &

Todorčević [LAT11] , and Bell, Ginsburg, Todorčević [BGT82]. The spaces build with the use

of Construction Schemes are more intuitive which makes them accessible to experts in other

fields that have no background on the technique of forcing. Moreover they open the possibility

of reformulating open problems from nonseparable functional analysis as problems about finite-

dimensional amalgamations that could be accessible to a wider spectrum of mathematicians.

We illustrate in this Thesis how construction schemes can be used to recursively build com-

plex mathematical structures, and perhaps more important, is that the constructed structures

are rather canonical and their properties could be analyzed in a similar intuitive manner. To

analyze these structures Todorčević [Tod17] introduced the concept of capturing and showed

that Capturing Construction Schemes exist using Jensen’s Diamond Principle ♦.

The study of Construction Schemes presented in this work is done through three different

1
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perspectives which I will now list very broadly.

Consistency Strength of Construction Schemes: During our study of construction schemes

we noticed that some combinatorial constructions only require a weak version of capturing,

whereas the Banach space applications do not reflect this. That motivates the study of the

hierarchy of n-capturing construction schemes. In Kalajdzievski & Lopez [KL17] we study this

hierarchy and show its relationship with the m-Knaster hierarchy from the theory of Forcing

Axioms. We also show that adding ω1 Cohen reals adds fully capturing construction schemes.

This implies in particular that many standard techniques on Set Theory have important con-

sequences in the theory of non separable Banach spaces.

Combinatorial Applications: Several interesting objects well known to set theorist can

be built using capturing Construction schemes. In [LT17] we show how the existence of a

Capturing Construction Scheme imply the existence of a Suslin tree and a destructible gap.

Furthermore we show that a stronger form of destructible gap, named T-gaps, can also be

constructed with the same techniques. An interesting feature of these theorems is that we

only need a weaker form of capturing to carry out the constructions. Namely, we only need

3-capturing Construction Schemes. This is not the case on the applications to Banach Space

Theory where the full strength of capturing seems to be necessary.

Banach Space Applications: The theory of non separable Banach spaces is in recent years

becoming an interesting area for applications of methods of Set Theory. The main interest is

to see how much of the deep separable theory can be extended to the context of nonseparable

Banach spaces. Many examples of non separable Banach spaces relevant to this question appear

in [LAT11], such as for example Banach spaces with no uncountable biorthogonal systems but

with uncountable ε-biorthogonal systems for 0 < ε < 1, or Banach spaces with uncountable

Schauder basis of basis constant K that do not have uncountable (< K)-basic sequences for

K an arbitrary constant bigger than 1. These examples show a striking discrepancy between

the theory of separable and non-separable Banach spaces since, for example, any separable

infinite-dimensional Banach space has an infinite K-basic sequence for K an arbitrary constant

bigger than 1. Our work [L1́7] has shown that we can find similar examples using capturing

construction schemes. Our spaces, however, seem to be more interesting than those of [LAT11]

since they can be further analyzed and therefore used to attack some other problems from the

area.

The Thesis is organized as follows. In Chapter 1 we introduce the background definitions

and results necessary for the rest of the Thesis. In particular we mention classical axioms of

Set Theory such as Jensen’s diamond ♦, and Martin Axiom for ω1 dense sets, MAω1 . We

give a brief introduction of important objects of combinatorics that will be important in future

chapters: Suslin trees, gaps, destructible gaps, and T-gaps. Since we will be concerned with
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applications to Functional Analysis we also mention the necessary concepts from the Banach

Space Theory, mainly concepts such as: Schauder basis, basic sequences, biorthogonal Systems

and their relation to the geometry of Banach Spaces: Mazur Intersection Property. We then

introduce the main concept of the Thesis: the Construction Schemes and immediately illustrate

their application to the construction of classical objects, such as Aronzajn trees and Hausdorf

gaps. It’s important to notice that this section requires no extra axioms in ZFC so it is not

possible to generalize this first examples towards the construction of Suslin trees or destructible

gaps without the use of extra axioms. To get such application we introduce the notion of

capturing construction schemes, and different variations on the idea of capturing, and show

that they are incompatible with MAω1 .

In Chapter 2 we present all of the results about the consistency of construction schemes

that we know at the moment. We begin by showing the existence of construction schemes in

ZFC.

Theorem 2.1. For any given type (mk, nk, rk)k<ω there is a construction scheme F of that

type.

Another framework to build uncountable objects using finite approximations in such a way

that one can control the uncountable substructures was developed by Shelah [She85] using ♦.

The existence of capturing construction schemes also follows from ♦ (see [Tod17]). We show

that adding ℵ1 Cohen reals implies there are capturing construction schemes.

Theorem 2.2. Adding κ ≥ ℵ1 Cohen reals also adds a fully capturing construction scheme.

Thus, capturing construction schemes are added in many finite support iterations. This

means that some of the most common techniques in Set Theory have relevant consequences in

Functional Analysis. We move on to study weaker forms of capturing. We study the Hierarchy of

n-capturing construction schemes show that there is a relation between them-Knaster Hierarchy

and n-capturing construction schemes.

Theorem 2.3. MAω1(Km) and n-capturing are independent if n ≤ m and they are incompatible

if n > m. Also MAω1(precaliber ℵ1) is independent of capturing.

We also prove equivalent results for fully ~P -capturing construction schemes and n-~P -capturing

construction schemes. We finish the Chapter with a summary of all known consistency results

at the moment.

In Chapter 3 we explore applications of capturing construction schemes to the classical

problems of Set Theory. In particular, we construct a Suslin tree and a Hausdorff gap, us-

ing 3-capturing construction schemes, this will serve as illustration of how to use capturing

construction schemes to build uncountable structures.

Theorem 3.1. Assume there is a Construction Scheme that is 3-capturing. Then there is a

Suslin tree.
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Theorem 3.3. Assume there is a 3-capturing construction scheme. Then there is a Hausdorff

(ω1, ω1)-gap that is a T-gap.

Using partitions to capture we can reduce the level of capturing needed to construct Suslin

trees and T-gaps. We do not know if n-capturing implies n-~P -capturing.

Theorem 3.4. Let ω =
⋃
i<ω Pi, with Pi infinite, and let ~P = (Pi : i < ω). Assume there are

2-~P -capturing construction schemes, then there is Suslin tree and Hausdorff T-gap.

We finish Chapter 3 by showing that the notion of Hausdorff T-gap is stronger than the

standard notion of a destructible Hausdorff gap. We do this with a forcing iteration that gives

us a model with destructible gaps but no T-gaps.

Theorem 3.5. There is a model of set theory in which there is a destructible Hausdorff (ω1, ω1)-

gap but with no T-gaps.

In Chapter 4 we apply capturing construction schemes to Banach Spaces. The motivation

for this Chapter are the following Theorems of López-Abadand Todorčević [LAT11]

Theorem 1.1 (Theorem 4.5 of [LAT11]). For every ε > 0 rational, there is a forcing notion

Pε which forces a Banach space Yε with an uncountable ε-biorthogonal system and such that for

every 0 ≤ τ < ε
1+ε , Yε has no uncountable τ -biorthogonal system.

Theorem 1.2 (Theorem 6.4 of [LAT11]). For every constant K > 1 there is a forcing notion

PK which forces a Banach space YK with an uncountable K-basis yet for every 1 ≤ K ′ < K,

YK has no uncountable K ′-basic sequences.

One feature of the constructions in this Chapter is that they can be understood without

much of a background in Set Theory. We give first a general overview of the constructions,

then we construct the following Banach spaces of density ℵ1.

Theorem 4.4. Assume there is a capturing construction scheme F . Then for every ε ∈ (0, 1)∩
Q, there is a Banach space Xε with an uncountable ε-biorthogonal system but no uncountable

τ -biorthogonal system for every 0 ≤ τ < ε
1+ε .

The notion of an uncountable ε-biorthogonal is related to the Mazur Intersection Property,

more concretely we also show:

Theorem 4.4. The Banach Space Xε does not have the Mazur Intersection Property, is poly-

hedral and it’s norm depends only on finitely many coordinates (see below for definition).

Theorem 4.5. Assume there is a capturing construction scheme F . Then for every constant

K > 1, there is a Banach space XK with a K-basis of length ω1 but no uncountable K ′-basic

sequence for every 1 ≤ K ′ < K.
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1.1 Preliminaries

We follow the standard notations in combinatorics and Set Theory, for more background see

Kunen [Kun80] or Jech [Jec02]. For background in the Banach Space Theory, see Lindenstrauss

& Tzafriri [LT77] or Hajek et al. [HMSVZ08].

We write [ω]ω for the collection of infinite subsets of ω. If a, b ⊂ ω are infinite sets we say

a is almost contained in b, and write a ⊆∗ b, provided a \ b is finite. Analogously, we denote

[ω1]<ω for the collection of finite subsets of ω1. For bounded subsets A,B ⊂ ω1 we write A < B

if for every a ∈ A and b ∈ B we have a < b. By A @ B we mean that A is an initial segment of

B, meaning that A ⊂ B and if a ∈ A, b ∈ B and b < a then b ∈ A.

Definition 1.4. For an uncountable set X and sα ⊂ X for α < γ. We say (sα)α<γ forms a

∆-system if there exists s ⊂ X such that sα ∩ sβ = s for every α < β < γ.

We will work with a special kind of ∆-systems.

Definition 1.5. For X = ω1 and sα ⊂ ω1, we say (sα)α<γ is an increasing ∆-system if it is a

∆-system and sα < sβ for every α < β < γ.

The following is a classical result of combinatorics known as the ∆-system Lemma or

Shanin’s Lemma.

Lemma 1.6. For X uncountable and sα ⊂ X finite for α < ω1. There is Γ ⊂ ω1 uncountable

and s ⊂ X such that (sα : α ∈ Γ) forms an increasing ∆-system.

For the duration of this work we will assume that all ∆-systems are increasing without

mention.

For A,B ⊂ ω1 finite, there is a unique order-preserving bijection between A and B. We

denote this bijection by ϕA,B : A → B, and use it to transport structures on A to structures

on B. In particular:

• If f : A → X is a function on A into some set X, we denote ϕA,B(f) : B → X the map

f ◦ ϕ−1
A,B.

A X

B

ϕA,B

f

ϕA,B(f)

• If S ⊂ P(A) is a family of subsets of A, we define

ϕA,B(S) = {ϕA,B(S) : S ∈ S}
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We mention forcing results and forcing axioms throughout this work. It is assumed the

reader is familiar with the classical results and principles of Set Theory. We recall the most

relevant definitions, the reader is refer to [Jec02] for background.

By a forcing notion P we mean a partial order (P,≤).

Definition 1.7. Let P be a forcing notion.

1. A set D ⊂ P is dense if for every p ∈ P there is q ∈ D such that q ≤ p.

2. Given p, q ∈ P we say p and q are incompatible and write p ⊥ q if there is no r ∈ P such

that r ≤ p, q. Otherwise we say p and q are compatible and write p 6⊥ q.

3. Let D be a family of dense sets of P. A set G ⊂ P is a D-generic filter, if

(a) for every p, q ∈ G, we have p 6⊥ q,
(b) for every r ∈ P and p ∈ G, then p ≤ r implies r ∈ G,

(c) for every D ∈ D we have D ∩G 6= ∅.

4. We say A ⊂ P is an antichain if every two elements in A are incompatible, i.e, for all

p, q ∈ A we have p ⊥ q.

5. We say P has the countable chain condition, or P is ccc, if every antichain of P is countable.

We are in conditions to define the Martin’s Axiom.

MAλ: For every ccc forcing notion P and every family D of dense sets of P with |D| ≤ λ,

there is a D-generic filter G.

The notation refers to Martin Axiom for λ dense sets. Martin’s Axiom is the statement MAλ

holds for all λ < c. It is independent of ZFC, as a note MAλ implies λ < c therefore it implies

the negation of the continuum hypothesis. We will be mostly interested in MAω1 and weaker

versions of this axiom.

Definition 1.8. Let P be a forcing notion. We say that P has precaliber ℵ1 if for every

W ⊂ P uncountable, we can find W0 ⊂ W also uncountable such that for all m < ω and all

p0, . . . , pm−1 ∈W0 there is p ∈ P with p ≤ p0, . . . , pm−1.

We say P is m-Knaster for m ≥ 2, denoted as Km if for every W ⊂ P uncountable,

we can find W0 ⊂ W uncountable such that for all p0, . . . , pm−1 ∈ W0 there is p ∈ P with

p ≤ p0, . . . , pm−1.

Note first that having precaliber ℵ1 implies Km, and Km implies Kn for n ≤ m. Also, a

forcing notion which is Km or has precaliber ℵ1 is clearly ccc. Thus, we have the following

implications:

ccc⇐ K2 ⇐ . . .⇐ Km ⇐ Km+1 ⇐ . . .⇐ precaliber ℵ1

We can now define the following forcing axioms which are weaker than MAλ:
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MAλ(Km): For every Km forcing notion P and every family D of dense sets of P with

|D| ≤ λ, there is a D-generic filter G.

MAλ(precaliber ℵ1): For every forcing notion P with precaliber ℵ1 and every family D of

dense sets of P with |D| ≤ λ, there is a D-generic filter G.

The axioms MA(Km) and MA(precaliber ℵ1) are defined similarly as MA. It is clear that

we have the following implications

MAλ

MAλ(K2) . . . MAλ(Km) MAλ(Km+1) . . . MAλ(precaliber ℵ1)

None of the implications above can be reverse. To see this note that MAω1 kills Suslin trees

(see definitions below) yet MAω1(K2) preserves Suslin trees. Therefore, if we start with a model

V with Suslin trees and we force with a K2 forcing such that MAω1(K2) holds, we obtain a

model V [G] where MAω1(K2) holds but MAω1 fails. To see none of the other implications can

be reversed we refer the reader to Barnet [Bar92] where it is shown that if you start with a

model V then add a Cohen real, and force with a Km poset that forces MA(Km), the resulting

model satisfies MA(Km) and MAω1(Km+1) fails. In Chapter 5 we give an alternative prove that

MAλ(Km) 6⇐MAλ(Km+1) using consctruction schemes.

The following cardinal numbers are related to the continuum and they play an important

role in combinatorial arguments. We will come back to them in Chapter 5.

Definition 1.9. We say that A ⊂ [ω]ω has the finite intersection property (f.i.p.) if for every

A0, . . . , An ∈ A their intersection A0 ∩ . . . ∩An is infinite.

Let A be a family with the f.i.p. and P ⊂ ω infinite. We say P is a pseudo intersection for

A if for every A ∈ A, we have P ⊆∗ A.

We say B ⊂ ωω is unbounded if for every h ∈ ωω there is f ∈ B such that f 6<∗ g.

Finally, let

p = min{|A| : A has the f.i.p and it has no pseudo intersection.}
b = min{|B| : B is unbounded.}

It is easy to see that ω1 ≤ p ≤ b ≤ c. If we assume MAω1(Km) or MAω1(precaliber ℵ1) then

ω1 < p. Actually there is a close relation between cardinal invariants and some forcing axioms.

1.1.1 Gaps in the quotient algebra P(ω)/Fin

Hausdorff’s (ω1, ω1)-gaps in the quotient algebra P(ω)/Fin are important set theoretic tools

that naturally show up in a wide range of applications in set theory and related areas (see,

for example,[DW87]). It turns out that there are numerous analogies between (ω1, ω1)-gaps
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and Aronszajn trees (see definition below for definitions), for example [LT01]. Suslin trees,

which play an important role in this work, are a very specific kind of Aronszajn trees since

they may admit uncountable branches in ω1-preserving forcing extensions of the set-theoretic

universe. Analogously, as it is well known, some (ω1, ω1)-gaps may be filled in ω1-preserving

forcing extensions of the universe, so this sort of gaps are sometimes called destructible gaps, or

Suslin gaps. We present this notions here and the proof of the basic results for the convenience

of the reader.

The study of gaps in P(ω)/Fin leads to a Ramsey-theoretic characterization of destruc-

tible gaps, which further strengthens the analogy between Suslin trees and destructible gaps.

Furthermore, it points out to a natural variation of the notion of destructible gap, a T-gap, a

notion that we introduce below and we will come back to in Chapter 3.

We recall the definition of gap in [ω]ω as well as some well known results.

Definition 1.10. We say (aα, bα)α<ω1 , with aα, bα ⊂ ω infinite, is a pre-gap if for every α <

β < ω1

1. aα ∩ bα = ∅.

2. aα ⊆∗ aβ and bα ⊆∗ bβ.

3. aδ ∩ bγ is finite for every δ, γ < ω1.

We say that (aα, bα)α<ω1 is a gap if it is a pre-gap and

4. there is no infinite c ⊂ ω such that

(a) aα ⊆∗ c for every α < ω1.

(b) bα ∩ c is finite for every α < ω1.

The existence of (ω1, ω1)-gaps is due to Hausdorff [Hau36]. It is easy to see that every

pre-gap (aα, bα)α<γ for γ < ω1 is not a gap.

The following Ramsey property of gaps is going to be useful in the rest of the Thesis since

it makes constructions of gaps with different properties more intuitive.

Proposition 1.11. A pre-gap (aα, bα)α<ω1 form an (ω1, ω1)-gap if and only if for every un-

countable Γ ⊂ ω1 there are α < β in Γ such that aα ∩ bβ 6= ∅.

Definition 1.12. We say a gap (aα, bα)α<ω1 is a destructible gap if for every uncountable

Γ ⊂ ω1 there are α < β in Γ such that (aα ∩ bβ) ∪ (aβ ∩ bα) = ∅.

In [Dow95] a destructible gap is constructed using ♦, we present a natural construction in

Chapter 3. The next proposition implies that under MAω1 all gaps are indestructible, mean-

ing there are no destructible gaps (see e.g. [TF95]). Thus, we have that the existence of a

destructible gaps is independent of ZFC.
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Proposition 1.13. The following are equivalent:

1. There is an ω1-preserving forcing notion that splits (aα, bα)α<ω1.

2. The forcing notion defined by p ∈ P = [ω1]<ω iff aα ∩ bβ = ∅ for all α 6= β in p ordered by

extension has the ccc.

3. For every uncountable Γ ⊂ ω1 there are α < β in Γ such that (aα ∩ bβ) ∪ (aβ ∩ bα) = ∅.

In the literature, (ω1, ω1)-gaps with these properties are called ‘destructible gaps’, ‘fillable

gaps’, ‘Souslin gaps’ or ‘S-gaps’, we will refer to them as S-gaps or destructible gaps. This

definition leads us to the following natural strengthening.

Definition 1.14. We say a gap (aα, bα)α<ω1 is a tower gap or a T-gap if for every uncountable

Γ ⊂ ω1 there are α < β such that aα ⊆ aβ and bα ⊆ bβ.

Theorem 3.5 asserts there is a model with a destructible gap but no T-gaps. In other words,

it is consistent that there are destructible gaps but no T-gaps, therefore the concept of T-gaps

is stronger than just destructible gap. See Chapter 3 for the prove of this fact.

There is another interesting fact, even though T-gaps are destructible by a ccc forcing. They

are not destructible by a K2 forcing, i.e, a forcing such that for every W ⊂ P uncountable, there

is W0 ⊂W uncountable with p 6⊥ q for every p, q ∈W0.

Proposition 1.15. Let (aα, bβ)α<ω1 be a T-gap, and P a K2 forcing notion. Then P does not

destroy the gap (aα, bβ)α<ω1. In other words, (aα, bβ)α<ω1 is still a T-gap in V [G], where G is

a generic filter for P.

We give the proofs of this propositions.

Proof of Proposition 1.11. Suppose (aα, bα)α<ω1 is not a gap and let c ⊂ ω witness this. There

is n < ω and uncountable Γ ⊂ ω1 such that aα \ c ⊂ n and bα ∩ c ⊂ n for all α ∈ Γ. We can

also assume that there are s, t ⊂ n such that for every α ∈ Γ aα ∩ n = s and bα ∩ n = t. The

condition aα ∩ bα = ∅ implies that s ∩ t = ∅.
For every α < β in Γ we have

aα ∩ bβ = (aα ∩ n) ∩ (bβ ∩ n) = s ∩ t = ∅

Suppose now that there is Γ ⊂ ω1 uncountable such that aα ∩ bβ = ∅ for every α < β in Γ.

Define

c =
⋃
α∈Γ

aα

is clear that aα ⊂∗ c for every α < ω1. We just have to check that c∩ bγ is finite for all γ < ω1.

Let γ < ω1. Since aα∩ bγ is finite, if c∩ bγ is infinite there must be some δ ∈ Γ limit in Γ, γ < δ

such that ⋃
α∈Γ∩δ

aα ∩ bγ is infinite
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but bγ \ bδ is finite and
⋃
α∈Γ∩δ aα ∩ bδ = ∅, contradiction.

Proof of Proposition 1.13. First we see (3) ⇒ (2) ⇒ (1). Let P be as in (2). Notice that P
forces (aα, bα)α<ω1 to split by forcing Γ ⊂ ω1 without the property of Proposition 1.11. We see

that P is ccc hence ω1-preserving.

Let (pα)α<ω1 in P. There is uncountable Γ ⊂ ω1 such that:

(i) (pα)α∈Γ forms a ∆-system with |pα| = k.

(ii) If pα = {δα1 < . . . < δαk } there is n < ω such that aδαi \ n ⊂ aδαk and the same for bδαi .

(iii) There are si, ti ⊂ n for i = 1, . . . , k such that aδαi ∩ n = si and bδαi ∩ n = ti.

Note that si ∩ tj = ∅. Consider {δαk }α∈Γ by hypothesis

there are α < β in Γ such that (aδαk ∩ bδβk ) ∪ (a
δβk
∩ bδαk ) = ∅.

By (iii) we have (aδαi ∩ bδβj ) ∪ (a
δβj
∩ bδαi ) ∩ n = ∅, by (ii) we have

(aδαi ∩ bδβj ) ∪ (a
δβj
∩ bδαi ) \ n ⊂ (aδαk ∩ bδβk ) ∪ (a

δβk
∩ bδαk ) = ∅

and pα ∪ pβ ∈ P.

(2) ⇒ (3) Let Γ be an uncountable subset of ω1. Take (pα = {α})α∈Γ since P has the ccc

there is α < β in Γ such that pα 6⊥ pβ but this implies (aα ∩ bβ) ∪ (aβ ∩ bα) = ∅ as we wanted.

(1)⇒ (2) Let Q be a forcing notion ω1-preserving that splits (aα, bα)α<ω1 . By the proof of

Proposition 1.11 for every Γ̇0 ⊂ ω1 uncountable we can find Γ̇ such that

Q 
 Γ̇ ⊂ Γ̇0 uncountable.

Q 
 “for every α < β in Γ̇, (aα ∩ bβ) ∪ (aβ ∩ bα) = ∅.”

Applying (2)⇔ (3), which we already proved, Q 
 “P has the ccc”. If P has an uncountable an-

tichain on the ground model it has an uncountable antichain on V Q because Q is ω1-preserving.

Thus P is ccc and we finish the proof.

Proof of Proposition 1.15. Start with a T-gap (aα, bα)α<ω1 , and a K2 forcing notion P, as above.

Since P is ccc, ω1 is preserved, therefore (aα, bα)α<ω1 is a pre-gap in V [G].

Let Γ̇ be a name for an uncountable subset of ω1 in V [G]. Take W ⊂ ω1 uncountable, and

(pα : α ∈W ) ⊂ P such that

For all α ∈W , pα 
 α ∈ Γ̇. (1.1)

Since P is K2 there is W0 such that for every α < β in W0, there is q ≤ pα, pβ. Apply the gap

condition from Proposition 1.11 to obtain α < β such that aα ∩ bβ 6= ∅. Also, by the T-gap

condition, there are α′ < β′ in W0 such that aα′ ⊂ aβ′ and bα′ ⊂ bβ′ .
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By the way W0 was obtained we can find q ≤ pα, pβ and q′ ≤ pα′ , pβ′ . By equation (1.1) we

have

q 
 ∃α < β in Γ̇, aα ∩ bβ 6= ∅

This implies (aα, bβ)α<ω1 is a gap in V [G] since Γ̇ arbitrary. Similarly,

q′ 
 ∃α′ < β′ in Γ̇, aα′ ⊂ aβ′ and bα′ ⊂ bβ′

this shows (aα, bβ)α<ω1 is a T-gap in V [G].

1.1.2 Trees and other combinatorial objects

One of the most common objects in combinatorics are trees. The reason is that many problems

can be coded as problems on trees. For example, perfect sets can be seen as branches of perfect

trees which has multiple applications in Descriptive Set Theory. This makes the study of trees

a classical part of Set Theory.

Definition 1.16. We say a partially ordered set (T,<) is a tree if for each t ∈ T the set

{s ∈ T : s < t} of predecessors of t is well-ordered by <.

We can then consider the ordered type of {s ∈ T : s < t} and say that t is on the level

α and denote it by Lev(t) = α if the set of its predecessors has well-ordered type α under <.

When we talk about level α of (T,<) we mean Tα = {t ∈ T : Lev(t) = α}. We say (T,<) has

height µ if µ = sup{Lev(t) + 1 : t ∈ T}. For simplicity we will write T to refer to (T,<).

Example 1.1 (Binary Trees). Consider the collection of finite sequences of 0’s and 1’s, and

denote it by 2<ω. We represent elements of 2<ω by letters t, s, . . . and ti denotes the ith element

of t. For a sequence t ∈ 2<ω we denote by |t| the length of t, thus t = (ti : i < |t|). For n < |t|
we let t � n = (ti : i < n), notice that t � n ∈ 2<ω for every n < ω. If t, s ∈ 2<ω, we say that

s < t if |s| < |t| and t � |s| = s.

It is clear that (2<ω, <) as defined above is a tree of height ω.

In the same way we can define 2<α for any ordinal α we call this tree the binary tree of

height α.

Definition 1.17. Let T be a tree, and B,A ⊂ T . We say B is a branch of T if it is maximal

and linearly ordered. We say A is an antichain if for different t, s ∈ A neither t < s nor t > s,

we say that t and s are incompatible and we denote it by t ⊥ s.

We are now in condition to define what is an Aronszajn tree and a Suslin tree.

Definition 1.18. We way a tree T is an Aronszajn tree if T has height ω1, it has countable

levels and it doesn’t have uncountable branches.

We say a tree T is a Suslin tree if T has height ω1, and it has neither uncountable branches

nor uncountable antichains.
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A classical result of Set Theory is that there is an Aronszajn tree in ZFC, however the

existence of a Suslin tree is independent of ZFC. To see this, let (T,<) is a Suslin tree and

consider the forcing notion P = (T,>) then we can force an uncountable branch to T . Since T is

a Suslin tree implies P is ccc, this means that MAω1 implies there are no Suslin trees. Saharon

Shelah [She84] showed that adding one Cohen real forces a Suslin tree, Stevo Todorčević showed

that modifying a coherent map by a Cohen real results in a Suslin tree. We provide a new

construction of a Suslin tree in Chapter 3.

To define Jensen’s diamond principle we need some definitions

Definition 1.19. We say C ⊂ ω1 is a club if it is closed and unbounded in ω1.

We say S ⊂ ω1 is stationary if for every club C, we have C ∩ S 6= ∅.

Jensen’s diamond principle:

♦ There is a sequence (Sα : α < ω1) such that

1. For every α < ω1, Sα ⊆ α.

2. For every Γ ⊂ ω1 the set {α < ω1 : Γ ∩ α = Sα} is stationary.

we call the sequence (Sα : α < ω1) a ♦-sequence.

The ♦-sequence (Sα : α < ω1) contains all subsets of ω therefore ♦ implies the continuum

hypothesis. Recall MAω1(precaliber ℵ1) implies ω1 < p ≤ c therefore MAω1(precaliber ℵ1) is

incompatible with ♦. It is well known that ♦ implies the existence of a Suslin tree (see for

example [Jec02] or Chapter 3) but the other direction does not hold. For example, adding a

Cohen real to a model with ω1 < c will force a model with a Suslin tree but CH is false therefore

♦ is false as well.

1.1.3 Banach spaces

We give some preliminaries of the theory of Banach spaces. We follow standard notation (see,

for example, [LT77] and [HMSVZ08]).

Definition 1.20. A Banach space (X , ‖ · ‖) is a complete normed space in R, we refer to it as

X . The unit ball BX is the collection of x ∈ X such that ‖x‖ ≤ 1.

The dual space X ∗, is the Banach space form by the maps x∗ : X → R which are linear and

bounded equip with the supremum norm ‖x∗‖ = sup{|x∗(x)| : x ∈ BX }.

We recall some other notions of Banach space theory relevant to this work.

Definition 1.21. Let X be a Banach space and (yα, y
∗
α)α<ω1 a sequence in X ×X ∗. For ε ≥ 0,

we say that (yα, y
∗
α)α<ω1 forms an ε-biorthogonal system if y∗α(yα) = 1 for every α < ω1, and

|y∗α(yβ)| ≤ ε for every α 6= β. If ε = 0 we say (yα)α<ω1 forms a biorthogonal system.
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A Banach space X have the Mazur intersection property (MIP) if every closed convex subset

of X is the intersection of closed balls. The following result relates the above algebraic definition

with the more geometric Mazur intersection property.

Theorem 1.22 ([SM97]). Let X be a Banach space.

1. If (yα, y
∗
α)α<κ forms a biorthogonal system with {y∗α}α<κ dense in X ∗ then X admits an

equivalent norm with the MIP.

2. If X is nonseparable and has an equivalent norm with the MIP, then X has an uncountable

ε-biorthogonal system for some 0 ≤ ε < 1.

One of the most important tools of Linear Algebra are Hamel basis of vector spaces. It is

natural then to look for a Banach space equivalent to Hamel Basis.

Definition 1.23. Let X be a Banach Space, and let (xn)n<ω be a sequence in X . We say

(xn)n<ω is a Schauder basis of X if for every x ∈ X there is a unique sequence of scalars

(an)n<ω such that
∑

n anxn is absolutely convergent and

x =
∑
n<ω

anxn

We say (xn)n<ω is a basic sequence, if it is a Schauder basis of span(xn : n < ω).

The following result is useful to check if a sequence is a Schauder basis.

Proposition 1.24. Let X be a Banach space and (xn)n<ω a sequence of nonzero vectors on X .

Then (xn)n<ω is a Schauder sequence if and only if the following conditions hold:

1. The linear span of (xn)n<ω is dense on X .

2. There is a constant K such that, for every sequence of scalars (ai)i<ω, and n < m∥∥∥∥∥
n∑
i=0

aixi

∥∥∥∥∥ ≤ K
∥∥∥∥∥
m∑
i=0

aixi

∥∥∥∥∥
We call the minimum constant K that makes 2 above hold, the basis constant.

Note that a sequence (xn)n<ω of nonzero vectors of X is a basic sequence if and only if

condition 2 above holds.

Theorem 1.25 (Theorem 1.a.5 of [LT17]). Every infinite dimensional Banach space has a

basic sequence. Furthermore, given ε > 0 we can take the basic sequence to have basic constant

(1 + ε).

First we prove the following Lemma.
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Lemma 1.26. Let X be an infinite dimensional Banach space and Z ⊂ X is a finite dimensional

subspace. For every ε > 0 there is x ∈ X with ‖x‖ = 1 such that

‖y‖ ≤ (1 + ε)‖y + λx‖

for every y ∈ Z and every λ ∈ R.

Proof. Let Z ⊂ X be finite dimensional, and 0 < ε < 1 be given. Apply Heine-Borel to conclude

that,

SZ = {y ∈ Z : ‖y‖ = 1} is totally bounded.

Thus, we can find a finite sequence (yi)i<n in SZ such that for every y ∈ SZ there is i0 < n

with ‖y − yi‖ < ε/2.

Take y∗i on X ∗ such that ‖y∗i ‖ = 1 and y∗i (yi) = 1. Since X is infinite dimensional there is

x ∈ X such that ‖x‖ = 1 and yi(x) = 0 for all i < n. We check that this x works.

Let y ∈ Z and λ ∈ R be given. Without loss of generality we can assume that ‖y‖ = 1.

There is i < n such that

‖yi − y‖ <
ε

2

Then we have

‖y + λx‖ ≥ |y∗i (y + λx)| ≥ |y∗i (y)|

using the linearity of y∗i we have,

1 = |y∗i (yi)| ≤ |y∗i (y)|+ |y∗i (yi − y)| ≤ |y∗i (y)|+ ε

2

Therefore

|y∗i (y)| ≥ 1− ε

2
≥ 1

1 + ε

and the Lemma follows.

Proof of Theorem 1.25. Let ε > 0 be given. Take a sequence 0 < εn < 1 such that∏
n<ω

(1 + εn) ≤ 1 + ε

Take some x1 ∈ X with ‖x1‖ = 1, and let Z1 be the span of x1. Now use the Lemma above

to find x2 ∈ X with ‖x2‖ = 1 such that

‖y‖ ≤ (1 + ε1)‖y + λx2‖

for every y ∈ Z1 and every λ ∈ R. Denote the span of x1 and x2 by Z2.

We can continue to use the Lemma to find a sequence (xn)n of normalized vectors of X ,
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Zn = span{x1, . . . , xn} such that

‖y‖ ≤ (1 + εn)‖y + λxn+1‖

for every y ∈ Zn and every λ ∈ R.

Let Y = span{x1, . . . , xn, . . .}. Then (xn)n forms a Schauder basis of Y of basic constant

(1 + ε). To see this, let a1, . . . , an, . . . be a sequence of scalars, and n < m be given. Then∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ ≤
m∏

i=n+1

(1 + εi)

∥∥∥∥∥
m∑
i=1

aixi

∥∥∥∥∥ ≤ (1 + ε)

∥∥∥∥∥
m∑
i=1

aixi

∥∥∥∥∥

If the Banach space X on which we are working is not separable it cannot have a Schauder

sequence. Also, basic sequences of X will only give us information about separable subspaces

of X . Since the nonseparable subspaces of X can have behavior that differs from separable

subspaces, we need to strengthen the definition to work with uncountable sequences. In this

work we are only concerned with Banach spaces of density ℵ1. This is because the study of

nonsparable Banach spaces is much different that the separable counterpart, and already for

spaces of density ℵ1 we can see a big difference between the separable and nonseparable theories.

Definition 1.27. We say that a sequence (yα)α<ω1 in a Banach space X is an uncountable

Schauder basis of constant K for K ≥ 1, if the two conditions hold:

1. X = span{yα : α < ω1}, and

2. For every λ < ω1 and every sequence of reals (aα)α<ω1 we have∥∥∥∥∥∑
α<λ

aαyα

∥∥∥∥∥ ≤ K
∥∥∥∥∥∑
α<ω1

aαyα

∥∥∥∥∥
We say that (yα)α<ω1 is an uncountable K-basic sequence if condition 2 above holds. Equiv-

alently, (yα)α<ω1 is a Schauder basis of constant K on span{yα : α < ω1}.

The first thing we want is a Theorem that says every Banach space of density ℵ1 has an

uncountable (1 + ε)-basic sequence unfortunately that is no possible, we cannot even guarantee

that a Banach space of density ℵ1 has an uncountable biorthogonal system. However we have

the following result of 2006 from Todorčević,

Theorem 1.28 (Todorčević [Tod06]). Assume MAω1 and PID. Every Banach space of density

ℵ1 has a quotient with an uncoutable Schauder basis of constant K = 1. In particular every

Banach space of density ℵ1 has an uncountable biorthogonal system.

Recall that PID is the P-ideal dichotomy stating that for any P-ideal I of countable subsets

of some index set S, either S can be partitioned into countably many subsets orthogonal to I
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or there is an uncountable subset of S all of whose countable subsets belong to I. For more

about this sort of dichotomies the reader is referred to [Tod11].

In Chapter 4 we will show that positive results in this direction require some extra axioms.

We do this by constructing Banach spaces of density ℵ1 that do not have uncountable biorthog-

onal systems, even if they have some uncountable ε-biorthogonal system. We also construct

other spaces with uncountable Schauder basis of constant K > 1 but no uncountable L-basic

sequence for 1 ≤ L < K. This results are done with a capturing construction scheme. Thus we

get the following results:

Corollary 1.29. Assume MAω1 and PID.

There are no capturing construction schemes.

See below for the definition of a capturing construction scheme.

We will see in chapter 3 that there is a Suslin tree provided there is a 3-capturing construction

scheme, therefore we get:

Corollary 1.30. Assume MAω1.

There are no 3-capturing construction schemes.

Some Technical comments: We introduce here the techniques that will appear in Chapter

4 without mention. Let c00(ω1) be the vector space of functions x : ω1 → R with finite support.

Where the support of x is defined by

supp(x) = {α < ω1 : x(α) 6= 0}

For γ < ω1 we let

eγ(α) =

0 α 6= γ

1 α = γ

be the unit basis vector of c00(ω1).

If F is a finite subset of ω1 and h : F → R, we consider the extension of h in c00(ω1) to be

zero outside of F and still refer to it as h without risk of confusion.

If h, x ∈ c00(ω1) we denote

〈h, x〉 =
∑
α<ω1

h(α)x(α) (1.2)

which is well-defined because h and x have finite support.

In order to make counting arguments we work most of the time on c00(ω1,Q), meaning we

consider functions in c00(ω1) that only take values in Q.

1.2 Construction schemes

In this section, we introduce the notion of a construction scheme.
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Capturing construction schemes were introduced in Todorčević [Tod17], where they were

used to construct compact spaces and non-separable normed spaces with considerable control

on their non-separable structure. In section 5 of [Tod17] a general framework to construct

Banach spaces using construction schemes is introduced. This framework, together with the

forcing amalgamations of [LAT11], constitute the technology behind the proofs of Theorem 4.4

and Theorem 4.5.

The key feature of this scheme is that it provides a family F of finite subsets of ω1 which

allow us to construct uncountable structures such us trees, gaps or norming sets. The way this

works is the following; we use the elements F of F to “approximate” an uncountable structure

in ω1 and use the canonical decomposition (see below) for the recursive construction, for this we

want all approximations of the same rank k to be “isomorphic”. The recursive step is done by

amalgamating many isomorphic structures of lower rank. These amalgamations will determine

the behavior of uncountable substructures of the limit structure via an appropriate property of

capturing of the construction scheme.

We explore this ideas in greater detail.

Definition 1.31. Let (mk)k<ω, (nk)1≤k<ω and (rk)1≤k<ω be sequences of natural numbers such

that m0 = 1, mk−1 > rk for all k > 0, nk ≥ 2 and for every r < ω there are infinitely many k’s

with rk = r. If for every k > 0 we have

mk = nk(mk−1 − rk) + rk

we say that (mk, nk, rk)k<ω forms a type.

Definition 1.32. We say that F is a construction scheme of type (mk, nk, rk)k<ω if F ⊂ [ω1]<ω,

a family of finite subsets of ω1, we can partition F =
⋃
k<ω Fk and for every F ∈ F there is

R(F ) @ F , such that

1. For every A ⊂ ω1 finite, there is F ∈ F such that A ⊂ F .

2. ∀F ∈ Fk, |F | = mk and |R(F )| = rk.

3. For all F,E ∈ Fk, E ∩ F @ F,E.

4. ∀F ∈ Fk, there are unique F0, . . . , Fn−1 ∈ Fk−1 with

F =
⋃
i<n

Fi

Furthermore n = nk and (Fi)i<nk forms an increasing ∆-system with root R(F ), i.e.,

R(F ) < F0 \R(F ) < . . . < Fnk−1 \R(F )

We call the sequence (Fi)i<nk of (4) the canonical decomposition of F .
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R(F )

F

F0

R(F )

F

F1

R(F )

F

F2

Figure 1.1: Canonical decomposition of F into F0, F1, and F2 with root R(F ).

It is implicitly proved in [Tod17] that for any type (mk, nk, rk)k<ω there is a construction

scheme with that type.

To avoid confusion we will use mk, nk and rk as above and we will omit reference to the type

of a construction scheme. For F ∈ F and F =
⋃
i<nk

Fi the canonical decomposition of F . We

simplify the notation and write ϕi : F0 → Fi for the unique order-preserving bijection ϕF0,Fi .

Analogously, if f is a function on F0 we can define the function ϕi(f) in Fi by γ 7→ f(ϕ−1
i (γ)).

The following lemma tells us more about the structure of a construction scheme

Lemma 1.33. For F ∈ Fk, E ∈ Fl, with l ≤ k we have E ∩ F v E.

Proof. We prove the lemma by induction on k and l. If l = k the result follows by the properties

of F . It’s enough to show that: if it holds for l ≤ k − 1, it holds for l and k as well. Let F as

above and let F =
⋃
i<nk

Fi be its canonical decomposition. Since the Fi’s are in Fk−1 we can

apply our hypothesis and E ∩ Fi v E for every i < nk. If E ∩ (F \ R(F )) = ∅ then the result

follows, otherwise let i < nk be minimal such that E ∩ (Fi \ R(F )) 6= ∅ then E ∩ F = E ∩ Fi.
Because if not, there is i < j < nk+1 with E ∩ Fj 6v E. Thus we have E ∩ F = E ∩ Fi @ E and

the result follows.

Corollary 1.34. For F ∈ Fk, E ∈ Fl and F =
⋃
i<nk

Fi the canonical decomposition of F . If

E ⊂ F and l < k then there is some i < nk with E ⊂ Fi. In particular, if l = k − 1 we have

E = Fi.

Corollary 1.35. Let E,F ∈ Fk, then ϕE,F (F � E) = F � F . Where F � F = {L ∈ F : L ⊂ F}.

Lemma 1.36. For F ∈ Fk, E ∈ Fl and E ⊂ F (in particular l ≤ k). For every µ ∈ E there

is a copy E∗ of E in F such that

1. E∗ ∩ (µ+ 1) = E ∩ (µ+ 1).
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2. E∗ \ µ is an interval of F with µ ∈ E∗.

Proof. We prove the lemma by induction on k and l. The result follows for l = k. Suppose the

result hold for l and k − 1 and l < k. Take F =
⋃
i<nk

Fi, the canonical decomposition of F .

By Corollary 1.34 there is i < nk such that E ⊂ Fi. By the induction hypothesis there is E∗∗

a copy of E in Fi such that the conclusion holds. If µ /∈ R(F ) then E∗ = E∗∗ works.

Otherwise, let E∗ = ϕFi,F0(E∗∗) by Corollary 1.35, E∗ is a copy of E and E∗ \ µ is an

interval of F0. Since µ ∈ R(E) then (1) holds, and (2) holds because F0 is an interval of F .

At this point, the reader is probably expecting to see a proof that construction schemes

exists. This expectation is warranted, but we will not do it in this Chapter. Instead, we

postpone the proof of existence to Chapter 2 and dedicate the next section to illustrate why

we are interested in construction schemes. We invite the reader to see Theorem 2.1 for a proof

that construction schemes of any reasonable type exists in ZFC.

1.2.1 First Applications

Let us see now how the construction scheme F can be used to recursively construct classical

combinatorial structures in a natural and intuitive way. We start with a Hausdorff gap in ωω.

We have already seen gaps in [ω]ω. Turns out every (ω1, ω1)-gap in ωω can be transformed into

an (ω1, ω1)-gap of [ω]ω. The reason why we choose this example as a first application is because

it illustrates how to apply construction schemes.

Example 1.2 (Hausdorff gap). Fix a construction scheme F .

Our aim is to construct a pre-gap (aα, bα)α<ω1 with the property of Proposition 1.11. We

do this by constructing an increasing sequence (Nk)k<ω, and approximations (aFα , b
F
α : α ∈ F ),

for all F ∈ Fk, such that

(i) for every F,E ∈ Fk, and α ∈ F and β ∈ E such that β = ϕF,E(α) where ϕF,E is the

increasing bijection from F onto E. Then we have aEβ = ϕF,E(aFα ), and bEβ = ϕF,E(bFα )

(ii) for every F ∈ Fk and α ∈ F , aFα , b
F
α ⊂ Nk,

(iii) For every l < k, E ∈ Fl, F ∈ Fk, with E ⊂ F , and α, β ∈ E, we have:

(a) aFα ∩Nl = aEα , and bFα ∩Nl = bEα ,

(b) aα \ aβ ⊂ Nl, and bα \ bβ ⊂ Nl, and

(c) aα ∩ bβ ⊂ Nl.

Let us proceed with the construction of (aFα , b
F
β : α ∈ F ) and F ∈ Fk, with conditions (i)

to (iii). Start with N0 = 2. Take F ∈ F0, we have F = {α} for some α < ω1. Let aFα = {0}
and bFα = {1}.
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Now suppose we have (aEα , b
E
α : α ∈ E) for all E ∈ Fl, l < k, satisfying (i) to (iii). Take

F ∈ Fk and let F =
⋃
i<nk

Fi be the canonical decomposition of F . Since Fi ∈ Fk−1 we have

(aFiα , b
Fi
α : α ∈ Fi) defined.

Let (Pi)i<nk such that P0 ≥ Nk−1 + rk, and Pj+1 − Pj ≥ mk, for all j < nk − 1. And let

Q < ω such that Q ≥ Pj +mk for j = nk − 1. Take Nk = Q+mk.

Enumerate R(F ) = {α0 < . . . < αrk−1}, then

aFαi =aF0
αi ∪ {Nk−1, . . . , Nk−1 + i}

bFαi =bF0
αi ∪ {Q, . . . , Q+ i}

Note that condition (i) implies aF0
αi = a

Fj
αi and bF0

αi = b
Fj
αi for any j < nk.

Enumerate F0 \R(F ) = {γrk < . . . < γmk−1}, then

aFγi = aF0
γi ∪ {Nk−1, . . . , Nk−1 + rk − 1} ∪ {P0, . . . , P0 + i}

bFγi = bF0
γi ∪ {Q, . . . , Q+ i}

Now pick 0 < j < nk and let δi = ϕj(γi). Recall ϕj is the increasing bijection on F0 onto

Fj , let

aFδi = a
Fj
γi ∪ {Nk−1, . . . , Nk−1 + rk − 1} ∪ {Pj , . . . , Pj + i}

bFδi = b
Fj
γi ∪ {Q, . . . , Q+mk − 1} ∪

⋃
l<j

{Pl, . . . , Pl + i}

It is clear from the construction that (aFα , b
F
α : α ∈ F ) satisfies conditions (i) to (iii).

Now let

aα =
⋃
F∈F
α∈F

aFα bα =
⋃
F∈F
α∈F

bFα

it is clear that (aα, bα)α<ω1 is a pre-gap, by conditions (i)–(iii). To see it is a gap. Let (ξn)n<ω

be an increasing sequence of ordinals and supn ξn ≤ ξ < ω1. Pick E ∈ F with ξ0, ξ ∈ E. Since

E is finite there is ξN /∈ E. We know there is F ∈ Fk with E ⊂ F and ξN ∈ F . Furthermore,

pick F such that k < ω is the first k < ω with this property, i.e, if F ∈ Fl and l < ω, then

either E 6⊂ F or ξN /∈ F . Let F =
⋃
i<nk

Fi be the canonical decomposition of F . There are

i < j < nk such that ξN ∈ Fi and ξ ∈ Fj , this is where we used that k < ω was the first

that E ∪ {ξ} ⊂ F . Let α = ξN and β = ξ, then Pi ∈ (aFα ∩ bFβ ) therefore aα ∩ bβ 6= ∅. By

Proposition 1.11, (aα, bα)α<ω1 is an (ω1, ω1)-gap. �

Note that the conditions (i)–(iii) are very intuitive if you want to approximate a pre-gap.

We turn our attention now to Aronsajn trees.

We want to use a construction scheme to build an Aronsajn tree in a natural way. The idea

is to construct a tree T ⊂ ω<ω1 , such that every branch of T is one-to-one, therefore T does
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not have uncountable branches. To do this, we construct a map ρ : [ω1]2 → ω, such that for

every α < ω1, the map ρα : α→ ω defined by ρα(ξ) = ρ(ξ, α) is one-to-one and

for every α < β, {ξ < α : ρα(ξ) 6= ρβ(ξ)} is finite. (1.3)

a map with this property is called a coherent map. Given a Coherent map (ρα : α < ω1) as

before we let

Tα =
{
σ ∈ ωα : {ξ < α : σ(ξ) 6= ρα(ξ)} is finite and σ is one-to-one

}
T =

⋃
α<ω1

Tα
(1.4)

The tree T has the induced order by extension from ω<ω1 . Therefore, if we construct a coherent

map (ρα : α < ω1) we can construct an Aronsajn tree.

Example 1.3 (Coherent Map). We want to approximate (ρα : α → ω : α < ω1) such that ρα

is one-to-one, and the condition (1.3) holds.

Fix a construction scheme F , we construct (Nk)k<ω increasing, and (ρFα : (F ∩ α) → Nk :

α ∈ F ) for every F ∈ Fk, such that

(i) for F,E ∈ Fk, α ∈ F , and β ∈ E with β = ϕF,E(α), we have ρEβ = ϕF,E(ρFα ),

(ii) ρFα is one-to-one.

(iii) for every l < k, E ∈ Fl, F ∈ Fk, with E ⊂ F , and α ∈ E, we have:

(a) ρFα � E = ρEα ,

(b) for ξ ∈ (F ∩ α), β ∈ F , with α < β, if ρFα (ξ) 6= ρFβ (ξ) then ξ ∈ E.

Note that part (b) of (ii), will imply property 1.3 and condition (ii) will imply ρα is one-to-one,

conditions (i) and (iii)–(a) make sure that ρα will be well defined.

Suppose we have (ρEα : (E ∩ α)→ Nl : F ∈ Fl) with l < k. Take F ∈ Fk, and F =
⋃
i<nk

Fi

be the canonical decomposition of F .

For α ∈ F0 let ρF0
α = ρFα .

Now enumerate F = {γ0 < γ1 < . . . , γmk−1}, Pick γi ∈ Fj \ R(F ) for some j > 0, for

ξ ∈ (Fj ∩ γj) define

ρFγi(ξ) =

ρ
Fj
γi (ξ) ξ ∈ Fj
Nk−1 + σ ξ /∈ Fj and ξ = γσ

Note that ρFα is well defined and conditions (i)–(iii) hold.

For every ξ < α < ω1 let F ∈ F with α, ξ ∈ F , define

ρα(ξ) = ρFα (ξ)
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note that this is well defined by (iii).

Also, ρα : α→ ω is one-to-one, otherwise there are ξ0 < ξ1 < α, and F ∈ F with ξ0, ξ1, α ∈ F
and ρFα (ξ0) = ρFα (ξ1) which contradicts (iii) above. To see (ρα : α < ω1) has property (1.3), let

α < β < ω1 and suppose we have and increasing sequence ξ0 < ξ1 < . . . < α such that

ρα(ξn) 6= ρβ(ξn) for every n < ω. (1.5)

Take E ∈ F with ξ0, α, β ∈ E. Since E is finite there is N < ω such that ξN /∈ E. Pick

F ∈ Fk such that E ⊂ F , and ξN ∈ F . Furthermore, we take F so that k is the first with this

property. Let F =
⋃
i<nk

Fi be the canonical decomposition of F . Then ξN ∈ Fi, α ∈ Fj , and

β ∈ Fj∗ for some i < j ≤ j∗ < nk. By the construction we have

ρFα (ξN ) = ρFβ (ξN )

This contradicts (1.5) therefore (1.3) holds and (ρα : α < ω1) is as we wanted.

Let T ⊂ ω<ω1 be defined as in (1.4), then T is an Aronsajn tree. �

No doubt the reader would have noted that our construction of ρFα is the minimum work

one would have to do to construct a one-to-one function with property (1.3).

We hope this examples motivate the reader to continue the study of construction schemes.

In the next section we study a property that makes construction schemes all the more useful,

allowing for constructions beyond ZFC.

1.2.2 Capturing

As we have seen already, construction schemes are useful tools for buiding uncountable struc-

tures. However, in order to control the behavior of the family of uncountable subsets of the

structure under construction we require an extra property of the construction scheme. In this

section we introduce the concept of a capturing construction scheme of Todorcevic [Tod17].

They form the main tool behind the constructions of Lopez & Todorcevic [LT17] and Lopez [L1́7]

which we present latter in this Thesis.

Given a construction scheme F of any type. The idea is that for every uncountable ∆-

system, we can find F ∈ F such that the canonical decomposition of F witnesses a finite part

of the ∆-System. More precisely,

Definition 1.37. Let F be a construction scheme. We say that F is n-capturing if for every

uncountable ∆-system (sξ)ξ<ω1 of finite subsets of ω1 with root s there are ξ0 < . . . < ξn−1 < ω1,

and F ∈ F with canonical decomposition F =
⋃
i<nk

Fi, such that

s ⊂ R(F )

for every i < n, sξi \ s ⊂ Fi \R(F ),

for every i < n, ϕi(sξ0) = sξi .
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We say that F is capturing if F is n-capturing for every n < ω.

Remark 1.1. Note that a construction scheme F which is n-capturing must have type (mk, nk, rk)k<ω

with nk ≥ n for infinitely many k’s. This should be contrasted with previous methods to con-

struct uncountable objects via amalgamations of finite substructures (see [Vel84] or [She85])

where only two amalgamations were considered. This is relevant because it is consistent to

have n-capturing construction schemes but no (n+1)-capturing construction schemes, see The-

orem 2.3.

Remark 1.2. Suppose F is a 2-capturing construction scheme of type (mk, 2, rk)k<ω, in other

words nk = 2 for every k < ω. It is easy to see that F is an (ω, 1)-morass in the sense

of Veleman [Vel84], this is clear with his (equivalent) definition of expanded simplified (ω, 1)-

morass. since morasses do not have an equivalent definition of capturing, capturing construction

schemes generalize morasses in a strong sense

The use of (κ, 1)-morasses for regular κ is well known in Set Theory. This suggest a hy-

pothetical generalization of capturing construction schemes to higher cardinals would have

interesting consequence in Set Theory.

We will see later in Chapter 3 that 3-capturing is enough to construct interesting combina-

torial objects. For now we have the following example.

Example 1.4. Suppose F is 3-capturing. Consider the forcing P of all P finite subsets of ω1

such that for every ξ0 < ξ1 < ξ2 in P , F does not 3-captures
{
{ξi} : i < 3

}
.

The ordering P ≤ Q in P means Q ⊂ P .

We check that P is ccc. Fix (Pα : α < ω1) ⊂ P. We can assume, by going to a subsequence,

it is a ∆-System. We apply 3-capturing and get α0 < α1 < α2 and F ∈ F capturing (Pαi : i =

0, 1, 2). We take P = Pα0 ∪ Pα2 and we have P ≤ Pα0 , Pα2 and P ∈ P. Therefore P is ccc.

Now let α < ω1, consider Dα = {P ∈ P : P \ α 6= ∅}.

Claim 1.38. For every α < ω1, Dα is dense.

Proof. Let P ∈ P, and α < ω1 be given. If P \ α 6= ∅ we are done. Otherwise, let E ∈ F , such

that P ∪ {α} ∈ E. Now take F ∈ Fk such that E ⊂ F and rk = 0. This implies R(F ) = ∅.
If F =

⋃
i<nk

Fi is the canonical decomposition of F . There is i < nk with E ⊂ Fi. Let

i < j < nk, then Fj > α. Take

Q = P ∪ ϕFi,Fj (P )

Then Q ∈ P, because F does not capture any three elements of P , therefore it does not captures

any three elements of ϕFi,Fj (P ). Finally, if some F ∗ ∈ F` captures
{
{ξi} : i < 3

}
where ξ0 ∈ P

and ξ2 ∈ ϕFi,Fj (P ), then F ∗ ∩ Fj is not an initial segment of F ∗ (we assume here that ` < k

the other case is analogous). This contradicts Lemma 1.33. Therefore Q ∈ P and Q ≤ P . It is

clear that Q ∈ Dα because ϕFi,Fj (P ) ⊂ Q \ α.
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Let D = {Dα : α < ω1}. Apply MAω1 to find G, a D-generic filter. Let

Γ =
⋃
P∈G

P

Then Γ is uncountable and F does not 3-captures
{
{ξ} : ξ ∈ Γ

}
. Indeed, suppose there are

ξ0 < ξ1 < ξ2 in Γ and F ∈ F 3-capturing the corresponding ∆-System. There is P ∈ G with

ξ0, ξ1, ξ2 ∈ P , but then P is 3-captured by F which contradicts the fact that P ∈ P. �

The previous example has as a consequence,

Corollary 1.30. Assume MAω1.

There are no 3-capturing construction schemes.

We will see other proofs of this result in latter Chapters. It is clear that n-capturing implies

m-capturing for m ≤ n. Thus, we have the following hierarchy:

2-capturing⇐= . . .⇐= n-capturing⇐= (n+ 1)-capturing⇐= . . .⇐= capturing

We will show in Chapter 5 that none of the implications above can be reversed. There is a

generalization of capturing that proves useful in some examples of Todorcevic [Tod17]. We

present it here for completeness.

Definition 1.39. Let F be a construction scheme. We say that F is fully capturing if for every

uncountable ∆-system (sξ)ξ<ω1 of finite subsets of ω1 with root s, and every k∗ < ω there are

F ∈ Fk with k > k∗, canonical decomposition F =
⋃
i<nk

Fi, and ξ0 < . . . < ξnk−1 < ω1, such

that

s ⊂ R(F )

for every i < nk, sξi \ s ⊂ Fi \R(F ),

for every i < nk, ϕi(sξ0) = sξi .

Definition 1.40. Let ω =
⋃
`<ω P` be a partition of ω into infinite components and let ~P =

(P` : ` < ω). Suppose (mk, nk, rk) forms a type such that for every ` < ω, and every r < ω

there are infinitely many k’s in P` with rk = r. Then we say (mk, nk, rk)k forms a ~P -type.

Definition 1.41. Let F be a construction scheme with type (mk, nk, rk)k, and 2 ≥ n. We

say F is n-~P -capturing if (mk, nk, rk)k forms a ~P -type, and for every uncountable ∆-system

(sξ)ξ<ω1 of finite subsets of ω1 with root s, and every ` < ω, there are ξ0 < . . . < ξn−1 < ω1,

k ∈ P` and F ∈ Fk with canonical decomposition F =
⋃
i<nk

Fi, such that

s ⊂ R(F )

for every i < n, sξi \ s ⊂ Fi \R(F ),

for every i < n, ϕi(sξ0) = sξi .
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We say F is ~P -capturing if F is n-~P -capturing for every n < ω.

What makes this version interesting is that it allows for different amalgamations. For

example, the existence of a 2-~P -capturing construction scheme implies there are Suslin trees

and T-gaps. We can also define ~P -fully capturing in the obvious manner.
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Chapter 2

Consistency of Capturing

Construction Schemes

This Chapter is dedicated to prove results about the existence of capturing construction schemes

and to explore the relation between the different forms of capturing. Our main goal for this

Chapter is to show that construction schemes exists in ZFC and that capturing construction

schemes are consistent with ZFC. We do this on Section 2.1 and Section 2.2 respectively. The

rest of the Chapter is dedicated to study the relation between capturing and the weaker forms

of capturing: n-capturing, this is relevant because the combinatorial consequences of capturing

only require 3-capturing, see Chapter 3. Yet applications to Banach spaces seems to demand

capturing, or ~P -capturing, see Chapter 4.

The first consistency result about construction schemes can be found in Todorčević [Tod17],

where ♦ is used to show existence of fully capturing construction schemes. Implicit in the proof

of Theorem 2.3 of [Tod17] is the result that construction schemes exists in ZFC.

We dedicate Section 2.1 to the proof of the following Theorem which we consider of inde-

pendent interest (see definitions below).

Theorem 2.1. For any given type (mk, nk, rk)k<ω there is a construction scheme F of that

type.

We present the proof of existence of construction schemes on ZFC first because construction

schemes are useful in providing a framework to build classical combinatorial structures in an

intuitive way. The reader will also benefit by reading the proof of construction schemes in ZFC

as the technique is analogous to the argument adding ω1 Cohen Reals.

Section 2.2 of this Chapter is dedicated to the proof of the consistency of capturing con-

struction schemes. We present a result from Kalajdzievski and Lopez [KL17], adding ω1 Cohen

reals also adds fully capturing construction schemes. We already know by Corollary 1.30 that

capturing construction schemes cannot be shown to exists in ZFC alone, so it is necessary to

assume extra axioms or use forcing to prove the existence of capturing construction schemes.

27
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Theorem 2.2. Adding κ ≥ ℵ1 Cohen reals also adds a fully capturing construction scheme.

In Section 2.3 we study the relation between capturing and n-capturing. We provide a

detailed analysis of the consistency of n-capturing construction schemes. We conclude that it

is consistent to have n-capturing constrution schemes, but no (n+ 1)-capturing. Furthermore,

we show that n-capturing implies MAω1(Kn+1) fails.

Theorem 2.3. MAω1(Km) and n-capturing are independent if n ≤ m and they are incompatible

if n > m. Also MAω1(precaliber ℵ1) is independent of capturing.

On Section 2.4 we extend the previous results to other forms of capturing, such as full

~P -capturing, and n-~P -capturing.

We finish the Chapter with a summary, Section 2.5, of set theoretic axioms that are consis-

tent or inconsistent with the existence of a capturing construction scheme. Some of this results

have already been proved in the previous sections but we find it useful to include a summary

of consistency results here.

2.1 Construction Schemes on ZFC

The result of this section is implicit in the proof of Todorcevic [Tod17]. Before going into the

prove let us recall what a construction scheme is:

Definition 2.4. Let (mk)k<ω, (nk)1≤k<ω and (rk)1≤k<ω be sequences of natural numbers such

that m0 = 1, mk−1 > rk for all k > 0, nk ≥ 2 and for every r < ω there are infinitely many k’s

with rk = r. If for every k > 0 we have

mk = nk(mk−1 − rk) + rk

we say that (mk, nk, rk)k<ω forms a type.

Definition 2.5. We say that F is a construction scheme of type (mk, nk, rk)k<ω if F ⊂ [ω1]<ω,

a family of finite subsets of ω1, we can partition F =
⋃
k<ω Fk and for every F ∈ F there is

R(F ) @ F , such that

1. For every A ⊂ ω1 finite, there is F ∈ F such that A ⊂ F .

2. ∀F ∈ Fk, |F | = mk and |R(F )| = rk.

3. For all F,E ∈ Fk, E ∩ F @ F,E.

4. ∀F ∈ Fk, there are unique F0, . . . , Fn−1 ∈ Fk−1 with

F =
⋃
i<n

Fi
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Furthermore n = nk and (Fi)i<nk forms an increasing ∆-system with root R(F ), i.e.,

R(F ) < F0 \R(F ) < . . . < Fnk−1 \R(F )

We are now in conditions to state the Theorem.

Theorem 2.1. Let (mk, nk, rk)k<ω be a type, there is a construction scheme F of type (mk, nk, rk)k<ω

Proof. Let a type (mk, nk, rk)k<ω be given, we fix this type for the rest of the proof. The idea

of the proof is to define a construction scheme on Fβ on β, by induction on β < ω1 limit.

We start by showing there is Fω which is a construction scheme in ω, i.e, Fω is a family

of finite subsets of ω such that for every A ⊂ ω finite, there is F ∈ Fω with A ⊂ F , and also

conditions (2)–(4) from the definition of a construction scheme hold.

We want {0, 1, . . . ,mk−1} ∈ Fωk . With this in mind we define first collections F(k, i) ⊂ 2mk

for every k < ω, i ≤ k. Start with

F(1, 0) =
⋃
i<m1

{i}

F(1, 1) =
{
{0, 1, . . . ,m1 − 1}

}
we must have r1 = 0 therefore condition (4) holds by decomposing {0, . . . ,m1} into singletons.

Let k > 1, and suppose we have constructed F(l, i), for all l < k, and i < ml, such that

conditions (2)–(4) of a construction scheme hold. For i < nk define

Fi = {0, . . . , rk − 1, rk + i(mk−1 − rk), . . . , rk + (i+ 1)(mk−1 − rk)}

and consider ϕi : F0 → Fi the order preserving bijection between F0 and Fi, note that both F0

and Fi have the same size, mk−1, and ϕ0 is the identity on F0 = {0, 1, . . . ,mk−1}. Then,

F(k, j) =
⋃
i<nk

ϕi

(
F(k − 1, j)

)
for all j < k

F(k, k) =
{
{0, 1, . . . ,mk − 1}

}
Note that F(k, k − 1) = {Fi : i < nk}. We check that conditions (2)–(4) hold.

Let F = {0, 1, . . . ,mk − 1}, define R(F ) = {0, 1, . . . , rk − 1} and let F =
⋃
i<nk

Fi be the

canonical decomposition of F . By the way F(k, k−1) has been defined, this is the only possible

decomposition for F . Thus (4) works at level k. It is also clear by the definition of F(k, k) and

F(k, k − 1), that (3) holds at levels k and k − 1. Now let E0, E1 ∈ F(k, j) with j < k − 1, by

definition, there are C0, C1 ∈ F(k − 1, j), and a0, a1 < nk, such that Eτ = ϕaτ (Cτ ), τ = 0, 1.

If a0 6= a1 then (3) holds because E0 ∩ E1 ⊂ R(F ) and then E0 ∩ E1 = ϕa0(C0 ∩ C1) which is

an initial segment of E0 becuase C0 ∩ C1 is an initial segment of C0, and the same for C1. If

a0 = a1 then (3) holds for E0, E1 because it holds for C0, C1.
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Now for every E ∈ F(k, j) for j < k we have E = ϕa(C) for some a < nk and C ∈ F(k−1, j)

and since (2) holds for C it holds for E. Also C has a canonical decomposition C =
⋃
i<nj

Ci

with Ci ∈ F(k − 1, j − 1). Since ϕa is a bijection, we have E =
⋃
i<nj

Ei with Ei = ϕa(Ci) ∈
F(k, j − 1). We want to see this decomposition is unique. Note that E ⊂ Fa and by definition

any decomposition of E will have to be contained in Fa. If we have two different decompositions

of E we can pull them via ϕa into different decompositions of C which is a contradition. Thus

(2)–(4) holds in F(k, i), i ≤ k.

We are now in conditions to define Fω,

Fωi =
⋃
k≥i

F(k, i)

Fω =
⋃
i<ω

Fωi

By the definition of the F(k, i)’s is clear that Fω satisfies conditions (2)–(4) of a construction

scheme. To check (1), let A ⊂ ω and take k big enough such that A ⊂ {0, 1, . . . ,mk} ∈ Fω.

This finish the first step of the induction.

Let δ < ω1 limit, and suppose we have constructed Fβ for every β < δ limit, such that

�β0 For every γ ≤ β limit, Fγ is a construction scheme on γ of type (mk, nk, rk)k<ω and

Fγ ⊂ Fβ.

�β1 For every finite A ⊂ β and α < β we can find F ∈ F with canonical decomposition

F =
⋃
i Fi, such that A ⊆ F0, R(F ) = F0 ∩ α.

Note that Fω as defined above satisfies �ω1 , indeed let A ⊂ ω and α < ω, there is k < ω big

enough such that A ⊂ {0, 1, . . . ,mk} ∈ Fω, and rk = α, here it is used that rk = α for infinitely

many values of k. If δ is a limit of limits we can find δn < δ increasing with δ = supn δn, such

that Fδn satisfies �δn0 and �δn1 , then

Fδk =
⋃
n<ω

Fδnk

Fδ =
⋃
k<ω

Fδk

satisfies �δ0 and �δ1.

The only case left is when δ is a successor, i.e, δ = β + ω for β < ω1 limit.

For A ⊂ ω1 finite, we will use the notation, Fβ � A = {F ∈ Fβ : F ⊂ A}, we also define

Fβi � A = {F ∈ Fβi : F ⊂ A} for all i < ω.

First we construct a sequence (ki, Di,Wi, µi)i<ω with nice properties. We do this by induc-

tion. Start by fixing a bijection f : ω → β. Pick k0 > 0 and D0 ∈ Fβk0 such that f(0) ∈ D0.

Pick also µ0 ∈ D0.
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Now suppose we have constructed an increasing sequence (ki)i<j in ω, Di ∈ Fβki for i < j,

Wi ∈ Fki for i < j − 1, and µi ∈ Di for i < j. Such that

1. f(i) ∈ Di for all i < j,

2. Di ⊂ µi+1 for all i < j − 1,

3. Wi ∩ µi+1 = Di ∩ µi for all i < j, and

4. Wi \ µi+1 is an interval of Di+1 such that µi+1 ∈Wi, for all i < j.

5. For every A ⊂ Di and α ∈ Di there is F ∈ Fβ � Di+1 with canonical decomposition

F =
⋃
a<nk

Fa, such that A ⊂ F0 and R(F ) = F0 ∩ α.

We can apply �β1 finitely many times (at most mkj−1
2
mkj−1 times) to obtain k > kj−1, and

D ∈ Fβk such that condition (5) works on Fβ � D. Apply �β1 one more time to find kj ≥ k and

Dj ∈ Fβkj with canonical decomposition

Dj =
⋃
i<nkj

Dj(i),

such that Dj−1 ∪ {f(j)} ∪D ⊂ Dj(0), and R(Dj) = Dj(0) ∩ µj−1.

Since µj−1 ∈ Dj−1 ⊂ Dj(0) we can apply Lemma 1.36 and obtain W ∈ Fβj−1 such that

W \ µj−1 is an interval of Dj(0), and W ∩ (µj−1 + 1) = Dj ∩ (µj−1 + 1). Let µj = min(Dj(1)).

If ϕi : Dj(0) → Dj(i) is the increasing bijection between Dj(0) and Dj(i), then let Wj−1 =

ϕ1(Dj−1). Note that µj = ϕ1(µj−1) and then Wj−1 \ mj is an interval of Dj(1), therefore

Wj−1 \µj is an interval of Dj since R(Dj) ⊂ µj , . It is easy to check that kj , Dj , µj , and Wj−1

satisfy conditions (1) to (5). This finishes the construction of (ki, Di,Wi, µi)i<ω.

Now for every j < ω, let

Fj = (Dj ∩ µj) ∪ {β, β + 1, . . . , β + |Dj \ β| − 1},

and let Φj : Dj → Fj be the increasing bijection between Dj and Fj . Note that condition (3)

and (4) imply

Φj = Φj+1 ◦ ϕDj ,Wj (2.1)

Now define

F(j, i) = Φj

(
Fβi � Dj

)
Fβ+ω
i =

⋃
kj>i

F(j, i)

Fβ+ω =
⋃
i<ω

Fβ+ω
i
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µi

µi+1

Di

β

Di+1

Wi

ϕDi,Wi

Φi

Φi+1

Figure 2.1: The diagram is commutative, Φi = Φi+1 ◦ ϕDi,Wi .

Note that (2.1) imply that Fβ+ω is well defined, Wj is a witness to F(j, i) ⊂ F(j + 1, i) since

Fβ � Dj is isomorphic to Fβ � Wj . Condition (1) implies Fβ ⊂ Fβ+ω. Indeed, let F ∈ Fβk ,

there is j < ω big enough so that k > kj , and for every α ∈ F there is i < j with f(i) = α.

Then F ⊂ Dj+1, therefore F ∈ F(j + 1, k)

We check that Fβ+ω works. We have already checked �β+ω
0 . To see �β+ω

1 let A ⊂ β + ω

finite and α < β + ω. Take j < ω big enough so that for every a ∈ (A ∪ {α}) ∩ β there is

i < j with f(i) = a, and A ∪ {α} ⊂ β + j. Then, by condition (1) on the induction we have

(A ∩ β) ⊂ Dj , therefore (A ∩ β) ⊂ (Dj+1 ∩ µj+1), which implies A ∪ {α} ⊂ Fj+1.

Let A∗ = Φ−1
j+1(A) and α∗ = Φ−1

j+1(α). By condition (5), there is F ∗ ∈ Fβ � Dj+2 with

canonical decomposition F ∗ =
⋃
i<nk

F ∗i such that A∗ ⊂ F0 and R(F ) = F0 ∩ α∗. Now let

A∗∗ = ϕDj+1,Wj+1

(
A∗
)
, α∗∗ = ϕDj+1,Wj+1(α∗), and F ∗∗ = ϕDj+1,Wj+1

(
F ∗
)
. Then F ∗∗ has

canonical decomposition F ∗∗ =
⋃
i<nk

F ∗∗i and A∗∗ ⊂ F ∗∗0 , and R(F ∗∗) = F ∗∗0 ∩ α∗∗. If we take

F = Φi+2

(
F ∗∗

)
, then F ∈ F(j + 2, k) and it has a canonical decomposition F =

⋃
i<nk

F (i).

By (2.1) we have Φj+2

(
A∗∗
)

= A ⊂ F (0) and R(F ) = F (0) ∩ Φj+2(α∗∗) but Φj+2(α∗∗) = α,

also by (2.1). Therefore �β+ω
1 holds.

Let now

Fk =
⋃
β<ω1
β limit

Fβk

F =
⋃
k<ω

Fk

Let us see that F is as we wanted.

Claim 2.6. F is a construction scheme of type (mk, nk, rk)k<ω.
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Proof. To see F is a construction scheme, consider A ⊂ ω1 finite, E,F ∈ Fk for some k < ω.

There is β < ω1 limit such that A,E, F ⊂ β. Then �β0 implies E,F ∈ Fβk , therefore E ∩ F is

an initial segment of E and F . Also |F | = mk and R(F ) = rk, and there is D ∈ Fβ such that

A ⊂ D, by construction D ∈ F . This shows (1)–(3) in the definition of construction scheme.

To finish the proof, suppose there are two decompositions of F ,

F =
⋃
i<n0

F 0
i =

⋃
j<n1

F 1
j

where F 0
i , F

1
j ∈ Fk−1 for i < n0, j < n1. By the construction there is some δ < ω1 limit with

F, F 0
i , F

1
j ∈ Fδ, for i < n0, j < n1 (we can argue F 0

i , F
1
j ∈ Fβ for i < n0, j < n1 but we do not

need this to reach a contradiction). This contradicts �δ0. Therefore F is a construction scheme

of type (mk, nk, rk)k<ω

Thus, we constructed F a construction scheme of type (mk, nk, rk)k<ω which is what we

wanted to prove.

We know then that there are construction schemes in ZFC as we have already proved. Using

a construction scheme F , we can build different uncountable structures but we are not always

able to prove that this structures have interesting combinatorial properties without capturing.

On the next section we focus our efforts on the existence of capturing construction schemes.

2.2 Consistency of capturing F
In this section we show that, given any type (mk, nk, rk)k there is a fully capturing construction

scheme F of type (mk, nk, rk)k. The proof will be by iterated forcing. We show that adding

κ ≥ ℵ1 Cohen reals forces the result above. This is shown by starting with a construction

scheme Fω constructed as in Section 2.1, and then we build a name for F in V [G] which fully

captures every uncountable ∆-System of the form

({ξ} : ξ ∈ Γ) where Γ ⊂ ω1 is uncountable. (F)

Let us show first recall the definition of capturing, and fully capturing construction scheme.

Definition 2.7. Let F be a construction scheme. We say that F is fully capturing if for every

uncountable ∆-system (sξ)ξ<ω1 of finite subsets of ω1 with root s, and every k∗ < ω there are

F ∈ Fk with k > k∗, canonical decomposition F =
⋃
i<nk

Fi, and ξ0 < . . . < ξnk−1 < ω1, such

that

s ⊂ R(F )

for every i < nk, sξi \ s ⊂ Fi \R(F ),

for every i < nk, ϕi(sξ0) = sξi .



34 Chapter 2. Consistency of Capturing Construction Schemes

We have to show first, that if F fully captures ∆-Systems of the form (F) then it is fully

capturing.

2.2.1 Capturing ∆-Systems of the form (F) implies capturing

Recall that on Example 1.4 we kill 3-capturing by killing all capturing of ∆-Systems of the form

(F). In this subsection we show that the reverse is also true. Namely we have

Lemma 2.8. Suppose F is a construction scheme which fully captures ∆-Systems of the form

(F), then F is fully capturing.

Proof. Let F be a construction scheme and suppose F fully captures all ∆-Systems of the

form ({ξ} : ξ ∈ Γ) where Γ is an uncountable subset of ω1. Let (Dα)α<ω1 be an uncountable

∆-System with root D and k∗ < ω. We want to show there are F ∈ Fk with k > k∗, and

α0 < . . . < αnk−1 such that

Dαi ⊂ Fi, i < nk

ϕi(Dα0) = Dαi , i < nk

For every Dα we are going to define the closure of Dα on F , Dα. Let

kα = min{` < ω : ∃F ∈ F`, Dα ⊂ F}

Now pick F ∈ Fkα with Dα ⊂ F , and let

Dα = F ∩ (max(Dα) + 1)

Let us check that Dα is well defined since it depends only on Dα and F , and not on the choice

of F ∈ Fkα we made above. Suppose we pick different F, F ∗ ∈ Fkα , with Dα ⊂ F, F ∗ we have

Dα ⊂ F ∩ F ∗. Since F ∩ F ∗ is an initial segment of both F and F ∗ we have F ∩max(Dα) =

F ∗ ∩max(Dα).

Take S ⊂ ω1 uncountable, and k0, d < ω, such that kα = k0 and |Dα| = d for all α ∈ S.

Furthermore, given α < β in S, then ϕDα,Dβ (Dα) = Dβ.

Let ξα = max(Dα) for all α ∈ S. Consider
{
{ξα} : α ∈ S

}
, since F fully captures ∆-

Systems of the form (F) there are α0 < . . . < αnk−1 in S, and F ∈ Fk with k > k0, k
∗, such

that F =
⋃
i<nk

Fi is the canonical decomposition of F and

∀i < nk, ξαi ∈ Fi \R(F )

∀i < nk, ϕi(ξα0) = ξαi

Pick now E ∈ Fk0 with Dα0 ⊂ E, then E∩F0 is an initial segment of E. Recall ξα0 ∈ E∩F0,

therefore Dα0 = E ∩ (ξα0 + 1) ⊂ F0. Arguing the same way we find Dαi ⊂ Fi for i < nk. Also
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ϕi(ξα0) = ξαi therefore ϕi(Dα0) = Dαi which implies

ϕi(Dα0) = Dαi

which in turn implies

∀i < nk, Dαi \D ∈ Fi \R(F )

This shows that F fully captures (Dα)α<ω1 as we wanted.

We are now in conditions to show the main result of the Chapter.

2.2.2 Adding Cohen reals and Capturing

In this section we show that adding ℵ1 Cohen reals also adds a fully capturing construction

scheme. Recall the following result Lemma from Chapter 1.

Lemma 1.36. For F ∈ Fk, E ∈ Fl and E ⊂ F (in particular l ≤ k). For every µ ∈ E there

is a copy E∗ of E in F such that

1. E∗ ∩ (µ+ 1) = E ∩ (µ+ 1).

2. E∗ \ µ is an interval of F with µ ∈ E∗.

If we add ℵ1 Cohen reals, then we force a fully capturing construction scheme.

Theorem 2.2. Adding κ ≥ ℵ1 Cohen reals also adds a fully capturing construction scheme.

Proof. Assume first that κ = ℵ1. And let (mk, nk, rk)k be a type on the ground model. We start

by fixing Fω, a construction scheme on ω build as in Section 2.1, with the following property:

For every A ⊂ ω finite and a < ω there is F ∈ F with canonical decomposition⋃
i<nk

Fi, such that A ⊂ F0 and R(F ) = F0 ∩ a.
(2.2)

Definition 2.9. Let ~p ∈ P if and only if supp(~p) ⊂ ω1 finite, for every δ ∈ supp(~p), δ is limit,

~p(δ) = (Dp
δ , a

p
δ) where Dp

δ ∈ Fω, apδ ∈ D
p
δ , and for every δ0 < δ1 in supp(~p)

1. Dp
δ0
⊆ Dp

δ1
, and

2. apδ0 < apδ1

We say ~p ≤ ~q if supp(~q) ⊂ supp(~p),

(i) for every δ < δ′ ∈ supp(~q), apδ′ − a
p
δ ≥ a

q
δ′ − a

q
δ, and

(ii) for every δ ∈ supp(~q) with Dq
δ ∈ Fk, there is W ∈ Fk, W ⊆ Dp

δ , with W ∩ apδ having the

same size that Dq
δ ∩ a

q
δ, and W \ apδ is an interval of Dp

δ with apδ ∈W .

We say ~p ∼ ~q if ~p ≤ ~q and ~q ≤ ~p.
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Note that P is equivalent to the forcing Cω1 for adding ω1 Cohen reals. To see this, notice

that P is a dense suborder of the partial order which is defined as above minus conditions 1, 2,

(i), and (ii), and this partial order is a finite support product of countable partial orders.

Now for a < δ < ω1, define the function φa,δ : ω1 → ω1 by

φa,δ(α) =

α α < a

δ + i α = a+ i

Note that, for ϕ : ω → ω increasing we have

ω ω1

ω

ϕ

φa,δ

φϕ(a),δ

φϕ(a),δ ◦ ϕ = φa,δ (2.3)

Now let ~p ∈ P, with supp(~p) = (δ0 < . . . < δn) suppose ~p(δi) = (Di, ai). We define

Φp : Dn → ω1 as:

Φq(x) =


x x < a0

φai,δi(x) ai ≤ x < ai+1

φan,δn(x) x ≥ an
Finally, for ~p as above we define

Fp = Φp
(
Fω � Dn

)
Let G ⊂ P be a generic filter, we define F in V [G] as

F =
⋃
p∈G

Fp

Claim 2.10. Let ξ < ω1 and ~p ∈ P. There is ~q ≤ ~p and x < ω such that ξ = Φq(x). In

particular there is δ ∈ supp(~q) with x ∈ Dq
δ .

Proof. Let ξ < ω1 and ~p ∈ P be given, we want to find ~q ≤ ~p and x < ω such that ξ = Φq(x).

Take δ < ω1 limit such that δ ≤ ξ < δ + ω. We write ξ = δ + ` where ` < ω. Consider

supp(~p) = {δ0 < . . . < δn} and ~p(δi) = (Di, ai) with Di ∈ Fωki .
Case 1: δ = δj for some j ≤ n, Pick a > Dn and find F ∈ Fω with canonical decomposition⋃

i<nk
Fi, Dn ∪ {aj , aj + 1, . . . , aj + `} ⊂ F0 and R(F ) = F0 ∩ aj . Apply Lemma 1.36 to find

W ∗i ∈ Fωki for i > j, such that |W ∗i ∩ ai| = |Di ∩ ai|, (W ∗i \ ai) is an interval of F with ai ∈W ∗i ,

for i > j. Now let ci = ϕ1(ai), and Wi = ϕ1(W ∗i ) for i > j.
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Define ~q ∈ P with supp(~q) = supp(~p) such that

~q(γ) =

(Di, ai) for γ = δi, i ≤ j.
(F, ci) for γ = δi, i > j.

Note that the Wi’s witness ~q ≤ ~p. By construction Φq(ai + `) = ξ.

Case 2: δj < δ < δj+1 for some j < n. Assume then there is j < n with δj < δ < δj+1. Pick

a > Dn and find F ∈ Fω with canonical decomposition
⋃
i<nk

Fi, Dn∪{a, a+1, . . . , a+`} ⊂ F0

and R(F ) = F0 ∩ aj+1. Apply Lemma 1.36 to find W ∗i ∈ Fωki for i > j, such that |W ∗i ∩ ai| =
|Di ∩ ai|, (W ∗i \ ai) is an interval of F with ai ∈ W ∗i , for i > j. Now let ci = ϕ1(ai), and

Wi = ϕ1(W ∗i ) for i > j.

Define ~q ∈ P with supp(~q) = supp(~p) ∪ {δ} such that

~q(γ) =


(Di, ai) for γ = δi, i ≤ j.
(F, a) for γ = δ,

(F, ci) for γ = δi, i > j.

It’s clear that ~q ≤ ~p (this is witness by the Wi’s) and Φq(a+ `) = ξ by construction.

Case 3: δ < δ0. Take a > Dn and find F ∈ Fω with canonical decomposition
⋃
i<nk

Fi,

Dn ∪ {a, a+ 1, . . . , a+ `} ⊂ F0 and R(F ) = ∅. Apply Lemma 1.36 to find W ∗i ∈ Fωki for i ≤ n,

such that |W ∗i ∩ ai| = |Di ∩ ai|, (W ∗i \ ai) is an interval of F with ai ∈ W ∗i , for i ≤ n. Now let

ci = ϕ1(ai), and Wi = ϕ1(W ∗i ) for i ≤ n.

Define ~q ∈ P with supp(~q) = {δ} ∪ supp(~p) such that

~q(γ) =

(F, a) for γ = δ,

(F, ci) for γ = δi, i ≤ n.

The construction shows that ~q ≤ ~p (by the pick of the Wi’s) and Φq(a+ `) = ξ by construction.

Case 4: δ > δn. Pick a > Dn and let F ∈ Fω such that Dn ∪ {a, a + 1, . . . , a + `} ⊂ F .

Apply Lemma 1.36 to find Wi ∈ Fωki , such that |Wi ∩ ai| = |Di ∩ ai|, (Wi \ ai) is an interval of

F with ai ∈Wi.

Define ~q ∈ P with supp(~q) = supp(~p) ∪ {δ} such that

~q(γ) =

(Di, ai) for γ = δi, i ≤ n.
(F, a) for γ = δ.

By the construction and the choice of Wi’s, we have ~q ≤ ~p and Φq(a+ `) = ξ.

This finishes all of the cases.

We see now, arguing as in Section 2.1, that F is a Construction Scheme.
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Claim 2.11. F as above is a construction scheme on V [G].

Proof. Now let A ⊂ ω1 finite and ~p ∈ P. Write A = {ξ1 < ξ2 < . . . < ξn}. We can apply

Claim 2.10 to find ~q1 ≤ ~p and x1 < ω finite such that Φq1(x1) = ξ1. Inductively we can find

~qn ≤ . . . ≤ ~q1 ≤ p and x1, x2, . . . , xn < ω such that Φqn(xi) = ξi for all i = 1, 2, . . . , n.

If supp(~qn) = {δ0 < . . . < δn} and ~q(δi) = (Di, ai), then F = Φqn(Dn) is such that A ⊂ F

and

~qn 
 F ∈ F

This shows property 1 of a Construction Scheme.

To see 2 note that F ∈ Fk if there is some ~p ∈ P and F ⊂ ω1 finite such that F ∈ Φp
(
Fωk �

Dn

)
, where supp(~p) = {δ1, . . . , δn} and ~p(δi) = (Di, ai). Thus there is D ∈ Fωk such that

F = Φp(D). We have |F | = |D| = mk and |R(F )| = |R(D)| = rk because Φp is a bijection.

To simplify the notation, when we take ~p ∈ P, we assume supp(~p) = {δ1, . . . , δn}, and

~p(δi) = (Di, ai), and we consider Fω � Dn. In other words when we write Fω we mean

Fω � Dn. This way we are free to use the symbols D, and n without confusion.

We check property 3. Let F̌ , Ě ∈ Fk in V [G]. Then there is some ~p ∈ P, and D0, D1 ∈ Fωk
such that F = Φp(D0), and E = Φp(D1). Since Φp is an increasing bijection we have F ∩ E =

Φp(D0 ∩D1) v Φp(D0),Φp(D1). Which shows F ∩ E v F,E as we wanted to show.

We prove property 4 by contradiction. Let F̌ ∈ Fk such that there are two different

decompositions of F̌ in V [G].

F̌ =
⋃
i<n

F̌i =
⋃
j<n′

F̌ ′j

There is ~p ∈ P such that F ∈ Φp(Fωk ), and Fi, F
′
j ∈ Φp(Fωk−1), for i < n and j < n′. By

definition there are D ∈ Fωk and Di, D
′
j ∈ Fωk−1 for i < n, j < n′, such that F = Φp(D),

Fi = Φp(Di) for i < n, and F ′j = Φp(D′j) for j < n′. Since Φp is a bijection we have

D =
⋃
i<n

Di =
⋃
j<n′

D′j

this contradicts the uniqueness of decomposition of Fω.

And so F is a construction scheme on V [G] as we wanted to show.

We have F on V [G] a construction scheme on V [G]. To show F is fully capturing, let Γ̇ be

a name for an uncountable subset of ω1 which defines a ∆-System of the form (F), and k∗ < ω

be given. Take Ω ⊂ ω1 uncountable and ~pα ∈ P for α ∈ Ω such that

~pα 
 α ∈ Γ̇ (2.4)

By Claim 2.10 above, we can assume without loss of generality that there is δ ∈ supp(~pα) such

that ~pα(δ) = (D, a), and α ∈ φa,δ(D).
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Find Ω0 ⊂ Ω uncountable, δα,0 < . . . < δα,d−1 < ω1 limit, Di ∈ Fωki for i < d, a0 < . . . <

ad−1, and x < ω such that:

1. (supp(~pα) : α ∈ Ω0) form a ∆-System with root {δα,0, . . . , δα,r−1},

2. supp(~pα) = {δα,0, . . . , δα,d−1},

3. ~pα(δα,i) = (Di, ai) for every i < d,

4. x ∈ Dd−1 and Φpα(x) = α.

Take j0 = d− 1 if x ≥ ad−1, or j0 < d such that aj0 ≤ x < aj0+1.

Pick k > k∗, kd−1, and α0 < . . . < αnk−1 in Ω0. We want to find ~q ∈ P such that

~q 
 αi ∈ Γ̇, Ḟ captures α0, . . . , αnk−1. (2.5)

Take F ∗ ∈ Fωk such that, F ∗ =
⋃
i<nk

F ∗i is the canonical decomposition of F ∗, Dd−1 ⊂ F ∗0 ,

and R(F ∗) = F ∗0 ∩ ar.
For i < d, note ai ∈ Di ⊂ F ∗0 , therefore we can apply Lemma 1.36 to find W0i ∈ Fωki with

|W0i ∩ ai| = |Di ∩ ai| and W0i \ ai an interval of F ∗0 with ai ∈ W0i. Let ϕi : F ∗0 → F ∗i be

the increasing bijection between F ∗0 and F ∗i . Define Wij = ϕi(W0j), and aij = ϕDj ,Wij (aj) for

i < nk, j < d, and xi = ϕDj0 ,Wij0
(x) for i < nk.

Since ϕi is a bijection we have

Wij ∈ Fωkj , |Wij ∩ aij | = |Dj ∩ aj |, and Wij \ aij is an interval of F ∗ with aij ∈Wij (2.6)

and by equation (2.3) we have

φaij0 ,δj0 (xi) = αi (2.7)

We define ~q ∈ P with supp(~q) = {δαi,j : i < nk, j < d}. Note now that δα,i does not depend

on α for i < r.

~q(δαi,j) =

(Dj , aj) for j < r

(F ∗, aij) for j ≥ r

With this definition, we have Φq(xi) = φaij ,δj0 (xi) = αi by (2.7). Also, ~q ≤ ~pαi for i < nk.

Indeed supp(~q) ⊂ supp(~pαi), and condition (i) of Definition 2.9 holds. Given δij ∈ supp(~pαi).

If i < r then ~pαi(δij) = (Dj , aj) = ~q(δij). If i ≥ r, by (2.6), we have that Wij ∩aij has the same

size that Dj ∩ aj and (Wij \ aij) is an interval of F ∗. This shows condition (ii) of Definition 2.9

Therefore ~q ≤ ~pαi . Which implies ~q 
 αi ∈ Γ̇ for every i < nk because of (2.4).

Finally, let F = Φq(F ∗). Then ~q 
 F ∈ Ḟ , and by the construction of (xi : i < nk) and (2.7)

we have ~q forces F captures α0, . . . , αnk−1. Therefore (2.5) holds which is what we wanted to

prove.

To see that in V [G] there are fully capturing construction schemes of any type suppose we

are given a name ṫ for a type on V [G], i.e, a name for a sequence of integers that forms a type.
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For A ⊂ ω1, let PA be the collection of conditions p ∈ P with supp(p) ⊂ A. Take A0 ⊂ P a

maximal antichain such that, every p ∈ A0 decides ṫ � 2. This means p decides the first two

elements in the sequence ṫ. Suppose we continue this way, and find A`. For every p ∈ A` we

find B` a maximal antichain below p such that, every q ∈ Bp,` decides ṫ � (`+ 2). Let

A`+1 =
⋃
p∈A`

Bp,`

Aω =
⋃
`<ω

A`

Since P has the ccc, every A` is countable and therefore Aω is countable. Also, every p ∈ Aω

has finite support, thus there is some α < ω1 such that Aω ⊂ Pα. This implies ṫ is in V [Gα]

where Gα = G ∩ Pα.

It is well known (see for example Theorem 8.2.1 of [Kun80]) that P = Pα ∗ Pω\α. We can

consider V [Gα] as the ground model, then ṫ is a type on the ground model and forcing with

Pω1\α is equivalent to adding ℵ1 Cohen reals, therefore it adds a fully capturing construction

scheme of type ṫ.

Suppose now κ > ℵ1. Let Cκ be the forcing for adding κ Cohen reals. We know that Cω1

adds capturing construction schemes, by Lemma 2.12, forcing with Cκ\ω1
preserves capturing

since it has precaliber ℵ1. Therefore forcing with Cκ adds capturing construction schemes.

2.3 The hierarchies of n-capturing construction schemes and

m-Knaster

We say a forcing notion P is Km if for every uncountable sequence (pα)α of P we can find an

uncountable subsequence (pαγ )γ , such that every γ1 < . . . < γm < ω1 we have pαγ1 , . . . , pαγm
have a common extension.

Throughout this section we will fix some n,m ≥ 2. Recall that MAω1(Km) implies MAω1(Kn)

for every m ≤ n, whereas n-capturing implies m-capturing for every m ≤ n. Thus, we have the

following two hierarchies:

MAω1(K2) . . . MAω1(Kn) MAω1(Kn+1) . . . MAω1(precaliber ℵ1)

2-capturing . . . n-capturing (n+ 1)-capturing . . . capturing

The main result of this section give us a relation between this two types of axioms and shows

that none of the implications above can be reversed. In particular it is consistent that there

are n-capturing construction schemes but no m-capturing construction schemes for m > n.

Theorem 2.3. MAω1(Km) and n-capturing are independent if n ≤ m and they are incompatible

if n > m. Also MAω1(precaliber ℵ1) is independent of capturing.
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We start the analysis of n-capturing with the following preservation lemma.

Lemma 2.12. Capturing is preserved by Kn forcing notions. Let P be a Kn forcing notion and

let F be a n-capturing construction scheme on V . If G ⊂ P is a generic filter for P, then F̌ is

a n-capturing construction scheme on V [G]. In particular capturing is preserved by precaliber

ℵ1 forcing notions.

Proof. Let P be a Kn forcing notion and Γ̇ a P-name for an uncountable subset of ω1. Let

W ⊂ ω1 and pα ∈ P, α ∈W such that

pα 
 α ∈ Γ̇

for every α ∈W . Since P is Kn there is n-linked W0 ⊂W uncountable. Recall F is n-capturing

in V , therefore there are α0 < . . . < αn−1 in W0 which are captured by F . We find now q ∈ P
with q ≤ p0, . . . , pn−1, then

q 
 α0, . . . , αn−1 ∈ Γ̇, and they are captured by F̌ .

The following result is well known but we give a detailed proof for the convenience of the

reader.

Theorem 2.13. Let κ > ℵ1 be a regular cardinal such that κω1 = κ. Then:

1. There is a focing notion with precaliber ℵ1 which forces MAω1(precaliber ℵ1).

2. There is a Km forcing notion which forces MAω1(Km).

Proof. We will construct P with precaliber ℵ1 as an iteration (Pα, Q̇α : α < κ) where for every

α, Q̇α = {∅} or


Pα Q̇α has precaliber ℵ1.

It is clear that we can repeat the same argument with Km forcings instead of precaliber ℵ1.

We start by fixing a coding function ϕ : κ→ κ× κ such that ϕ is surjective and ϕ(α) = (β, γ)

implies β ≤ α.

Notice there are 2ω1 many non-isomorphic forcing notions of size ≤ ω1 which have precaliber

ℵ1. We use the axiom of Choice to make an exhaustive list of them (W0,γ : γ < κ). We can do

this because |2ω1 | ≤ κω1 = κ by the hypothesis of the Theorem. Now we take P0 = W0,δ where

δ < κ is such that ϕ(0) = (0, δ).

Suppose we have (Pα, Q̇α : α < δ), such that for every α < δ,

(i) Pα+1 = Pα ∗ Q̇α,

(ii) |Pα| < κ,
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(iii) Pα has precaliber ℵ1, and

(iv) Q̇α is a Pα-name for a forcing notion of size at most ω1 which has precaliber ℵ1 i.e,


Pα Q̇α is a forcing notion that has precaliber ℵ1.

we want to find Pδ and Q̇δ.

If δ is limit we let Pδ be the countable support iteration of (Pα, Q̇α : α < δ). Then Pδ
satisfies conditions (ii) and (iii) because having precaliber ℵ1 is preserved by finite support

products (condition (i) and (iv) are void in this case).

If δ is a successor, then δ = γ+1 for some γ < δ, also we have Q̇γ is a Pγ-name for a forcing

notion with precaliber ℵ1 by (iv) above. Consider Pδ = Pγ ∗ Q̇γ . Then conditions (i)–(iii) are

satisfied because having precaliber ℵ1 is preserved by finite products.

To complete the forcing we have to find a Pδ-name Q̇δ for a forcing notion of size ≤ ω1

which has precaliber ℵ1.

We consider, as before, all possible names for forcings of size ≤ ω1 which has precaliber ℵ1

(note that ω1 is preserved because Pδ is ccc). We know the size of Pδ is < κ because Pδ = Pγ ∗Q̇γ

and, by (ii) we have |Pγ | < κ, and by (iv), Q̇γ is a name for a forcing notion of size ≤ ω1.

Thus, there are at most κω1 = κ many Pδ-names for a focing notion of size ω1. We can write

an exhaustive list with all of the names for forcings of size ≤ ω1 which have precaliber ℵ1,

(Wδ,α : α < κ).

Now we consider ϕ(δ) = (β, η) and look at Wβ,η. In other words, consider the ηth Pβ-name

for a forcing notion of size ≤ ω1 that has precaliber ℵ1. Since Wβ,η is a Pβ-name, it is also a

Pδ-name. If Pδ forces that Wβ,η has precaliber ℵ1 then we let Q̇δ = Wβ,η, where (β, η) = ϕ(δ)

as before. Otherwise, we let Q̇δ = {∅}. This gives us (Pα, Q̇α : α ≤ δ) with properties (i)–(iv)

as we wanted.

Let Pκ be the finite support iteration of (Pα, Q̇α : α < κ). Since precaliber ℵ1 is preserved by

finite support iterations we have Pκ has precaliber ℵ1. We show that Pκ forces MAω1(precaliber

ℵ1). This finishes the proof of the Theorem.

Claim 2.14. Pκ forces MAω1(precaliber ℵ1).

Proof. Fix Gα, a generic filter for Pα. For simplicity of notation we will represent the forcing

notion of Pα as 
α instead of 
Pα .

Let Ẇ ∈ V [Gκ] be a forcing notion of size ≤ ω1 which has precaliber ℵ1, without loss of

generality we can assume Ẇ is (ω1, �̇), and let Ḋ = (Ḋα : α < ω) ∈ V [Gκ] be a collection of

dense sets of Ẇ .

For every α, β < ω1, pick two maximal antichains, Aα,β and Bα,β such that:

1. for every q ∈ Aα,β, q decides whether α�̇β.

2. for every q ∈ Bα,β, q decides whether α ∈ Ḋβ.
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i.e, the antichains contain all relevant information about Ẇ and Ḋ .

Now consider

A =
⋃

α,β<ω1

Aα,β ∪ Bα,β

Since Pκ has finite support, every q ∈ A is in Pαq for some αq < κ. Also note |A| = ℵ0 ·ω1 < κ.

Thus there is λ = supq αq < κ such that Pλ contains all of the information about Ẇ and Ḋ .

This means that Ẇ and Ḋ are in V [Gλ], therefore there is a Pλ-name for Ẇ . This name will

be somewhere on the list (Wλ,α : α < κ) we constructed above. Say Wλ,η is the Pλ-name for

Ẇ .

Recall we constructed Pκ with ϕ : κ → κ × κ surjective, so there is some stage δ ≥ λ such

that ϕ(δ) = (λ, η). Since Ẇ and Ḋ are in V [Gλ] they will be in V [Gδ], and Wλ,η = Q̇δ by the

choice of ϕ. Therefore Gδ+1 is a D-generic filter and Gδ+1 is in V [Gκ] and this finishes the

proof.

Consider the following property

(F)m For every Γ ⊂ ωω there is Γ0 ⊂ Γ uncountable such that Γ0 has no g0, . . . , gm and k < ω

with g0 � k = . . . = gm � k, and |{g0(k), . . . , gm(k)}| = m+ 1.

Recall the following result of Todorčević implicit in [Tod89]

Theorem 2.15 (Todorčević [Tod85], see also [Tod89]). MAω1(Km) implies (F)m.

The following result proves the first half of Theorem 2.3

Theorem 2.16. Let F be a (m+ 1)-capturing construction scheme. Then (F)m fails.

Proof. Let F be as above. For every F ∈ Fl we construct, inductively on l, (fFα : (l + 1) →
Nl)α<ω1 such that

1. for E,F ∈ Fl and ϕ : E → F the increasing bijection between E and F , for every α ∈ E,

if β = ϕ(α) then fFβ = fEα .

2. for E ∈ Fl0 and F ∈ Fl1 , l0 < l1, if α ∈ E ∩ F then fFα � (l0 + 1) = fEα .

Let F ∈ Fk with canonical decomposition F =
⋃
i<nk

Fi and suppose (fFiα : α ∈ Fi) is

defined for all i < nk satisfying (1) and (2) above. Let fFα = ∅ if α /∈ F .

For α ∈ R(F ) let fFα (k) = Nk−1 and fFα � k = fF0
α .

For α0 ∈ F0 \R(F ) and αi = ϕi(α), i < nk. We let fFαi � k = fFiαi and

fFαi = Nk−1 + i+ 1

And let Nk = Nk−1 + nk + 1.

It is easy to see that (1) and (2) hold, and so fα =
⋃
F∈F f

F
α is a well defined function. Then

Γ = {fα : α < ω1} is a witness to the failure of (F)m. To see this suppose Γ0 = {fα : α ∈ W}
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where W ⊂ ω1 is uncountable. Since F is (m + 1)-capturing there are ξ0 < . . . < ξm in W

captured by some F ∈ Fk. This implies fξ0 � k = . . . = fξm � k and |{fξ0(k), . . . , fξm(k)}| =

m+ 1, and hence (F)m fails as we wanted to show.

Proof of Theorem 2.3. Start by assuming n ≤ m. To see n-capturing is independent of MAω1(Km),

note that any model of MAω1 is also a model of MAω1(Km) and contains no n-capturing con-

struction scheme for any 2 ≤ n < ω (see [LT17] for n > 2, and see Proposition 2.19 of this

paper for n = 2). Thus, it is consistent to have MAω1(Km) and no n-capturing construction

schemes. To show the other direction, start with a model V that has a capturing construction

scheme F . Let Km be the Km poset that forces MAω1(Km). Then F remains m-capturing on

the extension by Lemma 2.12 hence it is n-capturing provided n ≤ m.

Suppose now n > m and V is a model of MAω1(Km), then (F)m holds on V . By Theo-

rem 2.16 we know V contains no (m+ 1)-capturing construction scheme, otherwise (F)m fails

which is a contradiction. Thus V has no n-capturing construction scheme for n > m, as we

wanted to show.

To see MAω1(precaliber ℵ1) and capturing are independent we proceed in the same manner.

Any model of MAω1 satisfies MAω1(precaliber ℵ1) and has no capturing construction scheme.

Finally, let V be a model that contains a capturing construction scheme. Let K be a forcing

notion with precaliber ℵ1 that forces MAω1(precaliber ℵ1). Since K has precaliber ℵ1, F remains

capturing in the extension. This finishes the proof.

It is interesting to find a Kn forcing notion that kills (n + 1)-capturing in an obvious way.

Suppose F is a capturing construction scheme. Let F be fixed.

Definition 2.17. Let P ∈ Pn if F does not capture
{
{ξi} : i ≤ n

}
for any ξ0 < . . . < ξn in P .

We say P ≤ Q if Q ⊂ P .

Lemma 2.18. Pn defined as above is Kn.

Proof. Take (Pα : α < ω1) ⊂ Pn. We can find Dα ∈ Fkα such that Pα ⊂ Dα.

Find Γ ⊂ ω1 uncountable, and k < ω such that

1. (Dα : α ∈ Γ) forms a ∆-System,

2. kα = k for all α ∈ Γ, and

3. for every α < β in Γ, we have ϕDα,Dβ (Pα) = Pβ.

Note that (2) and (3) imply that for all α < β, ξ ∈ Dα ∩ Dβ, then ξ ∈ Pα if and only if

ξ ∈ Pβ.

We show (Pα : α ∈ Γ) is n-linked. Take α0 < . . . < αn−1 in Γ. Let Q =
⋃
i<n Pi. Suppose

ξ0 < . . . < ξn are in Q and F ∈ F` captures
{
{ξi} : i ≤ n

}
. Take F =

⋃
i<n`

Fi the canonical
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decomposition of F . We must have

ξi ∈ Fi \R(F )(
Fi \R(F ) : i < nl

)
are pairwise disjoint

(2.8)

Let us get a contradiction.

Case l ≤ k: Let j ≤ n with ξn ∈ Pαj . Applying Proposition 1.33, F ∩Dαj v F . Therefore

ξ0, . . . , ξn ∈ Dαj which implies ξ0, . . . , ξn ∈ Pαj . But F captures
{
{ξi} : i ≤ n

}
and this is a

contradiction because Pαj ∈ Pn.

Case l > k: There is some j < n and i0 < i1 ≤ n such that ξi0 , ξi1 ∈ Pαj . Then Fi1 ∈ F`−1,

and Fi1 ∩Dαj v Dαj by Proposition 1.33, but this implies ξi0 ∈ Fi1 . This contradicts (2.8)

We conclude that for every ξ0 < . . . ξn in Q, F does not capture
{
{ξi} : i ≤ n

}
. Hence

Q ∈ Pn. It is clear that Q ≤ Pαi for i < n. This finishes the proof.

It is clear that Pn kills (n+ 1)-capturing, thus we have an explicit proof that MAℵ1(Kn) is

incompatible with m-capturing for m > n.

Assume m > 2 and note that the model obtained in the proof of Theorem 2.3, which starts

with a capturing construction scheme and then forces MAω1(Km), shows the consistency of

MAω1(Km) +m-capturing + ¬(m+ 1)-capturing + ¬MAω1(Km−1)

this gives us an alternative proof of MAω1(Km) 6⇐MAω1(Km+1) showing that the hierarchy of

m-Knaster forcing axioms is strict.

To get that MAω1 implies there are no 2-capturing construction schemes, we prove the

following:

Proposition 2.19. If F is 2-capturing, then P1 is c.c.c.

Proof. Suppose (Pα : α < ω1) ⊂ P1 forms an uncountable antichain, and refine this family

so that it forms a ∆-system. Since F is 2-capturing, we can recursively construct a family

(Dα : α ∈ Γ) ⊂ F and refine it so that (Dα : α ∈ Γ) ⊂ Fk forms an uncountable ∆-System, and

for α ∈ Γ, Dα captures some (Pα′ , Pα′′). Again, since F is 2-capturing, there are some F ∈ F ,

α < β ∈ Γ, such that F captures (Dα, Dβ).

We claim that Pα′ ∪ Pβ′′ ∈ P1, which finishes the proof with a contradiction. Suppose

ξ0 < ξ1 ∈ Pα′ ∪ Pβ′′ are captured by some E ∈ Fl. Note that since Pα′ , Pβ′′ ∈ P1, ξ0 ∈ Pα′ \
Pβ′′ , ξ1 ∈ Pβ′′ \ Pα′ , and so ξ0 ∈ Dα \Dβ, ξ1 ∈ Dβ \Dα. Let E =

⋃
i<nl

Ei, Dβ =
⋃
i<nk

(Dβ)i,

Dα =
⋃
i<nk

(Dα)i be the respective canonical decompositions.

Case l ≤ k: Applying Proposition 1.33, E ∩Dβ v E. Therefore ξ1 ∈ E ∩Dβ gives ξ0 ∈ Dβ,

and this is a contradiction.

Case l > k: Recall that φE0,E1(F � E0) = F � E1, and Dα capturing (Pα′ , Pα′′) implies

ξ0 ∈ (Dα)0 \ R(Dα). Since there is some E′ ⊂ E with ξ0 ∈ E′ ∈ Fk, and ξ0 ∈ (Dα)0 ∈ Fk−1,

we get that ξ0 must be in the 0’th component of the canonical decomposition of E′, and hence
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φE0,E1(ξ0) = ξ1 must be in the 0’th component of the canonical decomposition of some element

in Fk � E1, which contradicts ξ1 ∈ (Dβ)1 \R(Dβ).

2.4 Other forms of capturing

Recall the definition of ~P -capturing construction scheme from [Tod17].

Definition 2.20. Let ω =
⋃
`<ω P` be a partition of ω into infinite components and let ~P =

(P` : ` < ω). Suppose (mk, nk, rk) forms a type such that for every ` < ω, and every r < ω

there are infinitely many k’s in P` with rk = r. Then we say (mk, nk, rk)k forms a ~P -type.

Definition 2.21. Let F be a construction scheme with type (mk, nk, rk)k, and 2 ≥ n. We

say F is n-~P -capturing if (mk, nk, rk)k forms a ~P -type, and for every uncountable ∆-system

(sξ)ξ<ω1 of finite subsets of ω1 with root s, and every ` < ω, there are ξ0 < . . . < ξn−1 < ω1,

k ∈ P` and F ∈ Fk with canonical decomposition F =
⋃
i<nk

Fi, such that

s ⊂ R(F )

for every i < n, sξi \ s ⊂ Fi \R(F ),

for every i < n, ϕi(sξ0) = sξi .

We say F is ~P -capturing if F is n-~P -capturing for every n < ω.

We prove the following Theorem about the consistency of other forms of capturing.

Theorem 2.22. Adding κ ≥ ℵ1 Cohen reals implies there are ~P -capturing construction schemes,

and fully ~P -capturing construction schemes.

Proof. The proof is an adjustment of the proof of Theorem 2.2 therefore we only give a sketch

for a fully ~P -capturing construction scheme.

Let ~P be a partition of ω and let (mk, nk, rk)k<ω be a given ~P -type on the ground model.

It is easy to see, using the fact that (mk, nk, rk)k<ω is a ~P -type, that there is a Construction

Scheme Fω on ω such that:

For every ` < ω, A ⊂ ω finite, and a < ω, there is k ∈ P` and F ∈ Fk with canonical

decomposition
⋃
i<nk

Fi, such that A ⊂ F0 and R(F ) = F0 ∩ a.
(2.9)

Suppose now Ḟ is defined as in Theorem 2.2 and Γ̇ is a name for an uncountable subset of

ω1 which defines a ∆-System of the form (F). Let ` < ω and k∗ < ω be given.

Find Ω ⊂ ω1 uncountable and pα ∈ P for α ∈ Ω such that

pα 
 α ∈ Γ̇ (2.10)
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And there is δ ∈ supp(pα) such that pα(δ) = (D, a), and α ∈ φa,δ(D). And δα,0 < . . . <

δα,d−1 < ω1 limit, Di ∈ Fωki for i < d, a0 < . . . < ad−1, and x < ω such that:

1. (supp(pα) : α ∈ Ω0) form a ∆-System with root {δα,0, . . . , δα,r−1},

2. supp(pα) = {δα,0, . . . , δα,d−1},

3. pα(δα,i) = (Di, ai) for every i < d,

4. For x ∈ Dd−1 with Φpα(x) = α, there is fixed j0 with: j0 = d−1 if x ≥ ad−1, or j0 < d−1

and is such that aj0 ≤ x < aj0+1.

Apply (2.9) to find k ∈ P` with k > k∗, and F ∗ ∈ Fωk such that k > kd−1, F ∗ =
⋃
i<nk

F ∗i
is the canonical decomposition of F ∗, Dd−1 ⊂ F ∗0 , and R(F ∗) = F ∗0 ∩ ar.

Pick arbitrary α0 < . . . < αnk−1 in Ω. We construct q ∈ P, such that

q 
 αi ∈ Γ̇, ∃F ∈ Ḟk captures α0, . . . , αnk−1. (2.11)

For i < d, note ai ∈ Di ⊂ F ∗0 , therefore we can apply Lemma 1.36 to find W0,i ∈ Fωki with

W0,i ∩ ai = Di ∩ ai and W0,i \ ai an interval of F ∗0 with ai ∈ W0,i. Let ϕi : F ∗0 → F ∗i be the

increasing bijection between F ∗0 and F ∗i . Define Wi,j = ϕi(W0,j), and ai,j = ϕDj ,Wi,j (aj) for

i < n, j < d, and xi = ϕDj0 ,Wi,j0
(x) for i < nk.

It is easy to check that

Wi,j ∈ Fωkj , |Wi,j ∩ ai,j | = |Dj ∩ aj |, and Wi,j \ ai,j is an interval of F ∗ with ai,j ∈Wi,j (2.12)

and as before we have

φai,j0 ,δαi,j0 (xi) = αi (2.13)

We define q ∈ P with supp(q) = {δαi,j : i < n, j < d}. Note now that δα,i does not depend

on α for i < r.

q(δαi,j) =

(Dj , aj) for j < r

(F ∗, ai,j) for j ≥ r

With this definition, we have Φq(xi) = φai,j0 , δαi,j0(xi) = αi by (2.7), and (Wi,j : r ≤ j < d)

is a witness to q ≤ pαi for every i < nk, by (2.12). This implies q 
 αi ∈ Γ̇ for every i < nk

because of (2.10).

Finally, let F = Φq(F ∗). Then q 
 F ∈ Ḟ , and by the construction of (xi : i < nk)

and (2.13) we have q forces F captures α0, . . . , αnk−1. Therefore (2.11) holds which is what we

wanted to prove.

We also have the following results related to the consistency of n-~P -capturing. The proof

is analogous to the arguments in Section 2.3.
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Theorem 2.23. Let ~P be a partition of ω as above. Then n-~P -capturing and MAω1(Km) are

independent if n ≤ m and they are incompatible if n > m. Also ~P -capturing, ~P -fully capturing,

and fully capturing are all independent of MAω1(precaliber ℵ1).

It is clear that n-~P -capturing implies n-capturing and ~P -capturing implies capturing, how-

ever we do not know if any of the implications can be reversed. Analogously, fully capturing

implies capturing but we do not know if it is consistent to have capturing without fully captur-

ing.

2.5 Summary of Consistency Results

We finish the Chapter with a list of all of the consistency results about capturing construction

schemes that we know at this moment. The proofs of this results will be given in later Chapters

of this Thesis.

For the sake of simplicity, when we say there is a capturing construction scheme F , or

when we talk about consistency of capturing, consistency of n-capturing, or a variant of

the above, what we mean is that for any given type (mk, nk, rk)k<ω, there is a capturing (n-

capturing) construction scheme F of type (mk, nk, rk)k<ω. A summary of all results can be

seen in Table 2.1.

Axiom Relationship to capturing F Notes

Suslin Tree Consequence of 3-capturing Theorem 3.1

Destructible gap Consequence of 3-capturing Theorem 3.3

♦ Implies capturing Theorem 2.3 of [Tod17]

CH Independent Theorem 2.28

p = ω1 Independent Theorem 2.24

PID Incompatible with 3-capturing Corollary 2.27

MAω1 Incompatible with 3-capturing Corollary 1.30

PFA Incompatible with 3-capturing Theorem 1.29

MAω1(precalliber ℵ1) Independent Theorem 2.3

MAω1(σ-centered) Independent Theorem 2.24

MAω1(Km) Indep. of n-capturing if n ≤ m, incomp. if n > m. Theorem 2.3

Table 2.1: Relationship of different axioms with the existence of a capturing construction scheme
F .
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Theorem 2.24. Let κ > ℵ1, with κ = κ<κ. Then it is consistent that there are fully ~P -capturing

construction schemes and MAκ(σ-centered) holds. In particular p = κ.

Also, it is consistent that there are fully ~P -capturing construction schemes and p = ω1.

Proof. Following the proof of Theorem 2.13 we can show that there is a forcing notion that has

precaliber ℵ1 and forces MAκ(σ-centered). It is well known that finite support iterations add

Cohen reals at limit stages, therefore there are fully ~P -capturing construction schemes.

The second part follows from a result of Bell.

Theorem 2.25 (Bell [Bel81]). Let κ = min{λ : MAλ(σ-centered) fails}. Then p = κ.

To finish the proof let V be our ground model. Then adding ω1 Cohen reals implies there

are fully ~P -capturing construction schemes. We just have to show p = ω1 after adding ω1 Cohen

reals. We are going to show that b = ω1.

Consider the family B given by the sequence (fα : α < ω1) added by Cω1 . We show this

sequence is unbounded on ωω.

Let M = V [Gκ] be our ground model and let Gλ be a generic filter for Cλ. Take g : ω → ω

in M [Gω1 ] and let ġ be a name for g on M . Since Cω1 has the ccc, we can pick a maximal

antichain Ak deciding the value of g(k). Recall Cω1 is a finite support iteration, therefore for

every p ∈ Ak there is αp < ω1 such that p ∈ Cαp . Let

A =
⋃
k<ω

Ak

and take λ = sup{αp : p ∈ A }. Then g ∈ V [Gλ].

Now we prove that fλ+1 6<∗ g. Without loss of generality we can assume g ∈ M and we

force with C1 adding a single Cohen real f . Let p ∈ C1 and n < ω1 be given. Take k > n such

that supp(p) < k. Let q be equal to p on supp(p) and q(k) = g(k) + 1, then q ≤ p and

q 
 f(k) > g(k)

This implies f 6<∗ g and finishes the proof that b = ω1 hence p = ω1 as we wanted to see.

We would like to remark that it is known (see Roitman [Roi79]) that adding a Cohen real to a

model of MAω1(σ-centered) preserves MAω1(σ-centered). Also, adding a Cohen real to a model

of MAω1(precaliber ℵ1) gives a model where MAω1(σ-centered) holds but MAω1(precaliber ℵ1)

fails. Therefore,

Corollary 2.26. It is consistent that there are capturing construction schemes, MA(σ-centered)

holds, but MAω1(precaliber ℵ1) does not holds.

This previous results are interesting when we take into account Theorem 3.1 from Chapter

3,
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Theorem 3.1. Assume there is a 3-capturing construction scheme, then there is a Suslin tree.

Now we have the following immediate corollaries

Corollary 1.30. MAω1 implies there is no 3-capturing construction scheme.

Recall that there are no Suslin trees in a model of PID, i.e, PID implies Suslin Hypothesis.

Corollary 2.27. PID implies there is no capturing construction scheme.

It is a classical result of Todorcevic [Tod06] that MAω1 and PID imply that every Banach

space of density ω1 has an uncountable Biorthogonal System. In Chapter 4 we will show

that capturing construction schemes imply there are Banach spaces of density ω1 without

uncountable Biorthogonal Systems. This leads to the following Corollary which also follows

from the previous Corollary since PFA implies PID (see [Tod00] and [Tod11])

Corollary 1.29. PFA implies there is no capturing construction scheme.

This is a consequence of the discussion above and the fact that PFA implies MAω1 and PID.

PFA is the forcing axiom for proper forcings, the definition of proper forcing is tangential to

this work. The interesting reader is refer to Shelah [She98] or the monograph of Baumgart-

ner [Bau84], for the reader interested on the applications of PFA we refer to Todorcevic [Tod14].

The following Theorem summarizes all of the positive results about existence of capturing

construction schemes F .

Theorem 2.28. Let κ > ℵ1 be a regular cardinal such that κ<κ = κ. The following statements

are consistent:

(i) There is a fully ~P -capturing construction scheme and ♦ holds. In particular CH holds.

(ii) There is a fully ~P -capturing construction scheme and MAω1(precaliber ℵ1) holds.

(iii) There is a n-capturing construction scheme and MAω1(Kn) holds.

(iv) There is a fully ~P -capturing construction scheme, b = ℵ1, c = κ.

(v) Let P = (Pα, Q̇α : α < κ) be a finite support iteration. If there is η ≤ κ of cofinality ω1

and for every η < α < κ,


α Q̇α has precaliber ℵ1

then P forces there are fully ~P -capturing construction schemes.

(vi) Let P = (Pα, Q̇α : α < κ) be a finite support iteration. If there is η ≤ κ of cofinality ω1

and for every η < α < κ,


α Q̇α is Km

then P forces there are m-~P -capturing construction schemes.
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The only part that needs futher explanation are part (v) and (vi). It is a well known result

that finite support iterations add Cohen reals at limit stages therefore, if P is as in part (v)

above, then Pη will had ω1 Cohen reals and there are fully ~P -capturing construction schemes.

This construction schemes are preserved by the iteration because of Lemma 2.12. An analogous

argument shows (vi).
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Chapter 3

Trees and Gaps

We turn our focus now to applications of capturing construction schemes. Within Set Theory

the study of trees and gaps is interesting as they are relatively simple combinatorial objects

that appear relatively often. We show that there is a natural construction of a Suslin tree and

a Hausdorff T-gap provided there is a capturing construction scheme.

We start the Chapter showing the following result.

Theorem 3.1. Assume there is a Construction Scheme that is 3-capturing. Then there is a

Suslin tree.

We then use the same idea to prove that there are T-gaps in every model with a 3-capturing

construction scheme. Remember the definitions of Hausdorff (ω1, ω1)-gap, destructible gap, and

T-gap.

Definition 3.2. 1. A pre-gap (aα, bα)α<ω1 form a Hausdorff (ω1, ω1)-gap if for every un-

countable Γ ⊂ ω1 there are α < β in Γ such that aα ∩ bβ 6= ∅.

2. We say a gap (aα, bα)α<ω1 is a destructible gap if for every uncountable Γ ⊂ ω1 there are

α < β in Γ such that (aα ∩ bβ) ∪ (aβ ∩ bα) = ∅.

3. We say a gap (aα, bα)α<ω1 is a T-gap if for every uncountable Γ ⊂ ω1 there are α < β

such that aα ⊆ aβ and bα ⊆ bβ.

We show the following result.

Theorem 3.3. Assume there is a 3-capturing construction scheme. Then there is a Hausdorff

(ω1, ω1)-gap that is a T-gap.

The proof of the Theorem contains a natural example of a T-gap. This becomes more

interesting when this construction is compared with previous known examples of T-gaps. For

a construction of a Hausdorff T-gap using ♦ the reader is refer to Alan Dow [Dow95].

We do not know if the previous results can be improved to the case of 2-capturing construc-

tion schemes. We can say more about this question if we use partitions to capture.

53
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Theorem 3.4. Let ω =
⋃
i<ω Pi, with Pi infinite, and let ~P = (Pi : i < ω). Assume there are

2-~P -capturing construction schemes, then there is Suslin tree and Hausdorff T-gap.

We finish the Chapter studying the relation between T-gaps and destructible gaps, or S-

gaps. Recall that every T-gap can be filled by a ccc forcing notion, Proposition 1.13. Therefore,

the existence of a 3-capturing construction scheme implies there is a destructible (ω1, ω1)-gap.

Every T-gap is destructible but the converse need not be true. More precisely, we have the

following result

Theorem 3.5. There is a model of set theory in which there is a destructible Hausdorff (ω1, ω1)-

gap but with no T-gaps.

3.1 Suslin trees

We dedicate this section to show that 3-capturing implies there are Suslin trees. We also talk

about some of the consequences of this result. More concretely, we want to prove the following

result.

Theorem 3.1. Assume there is a Construction Scheme that is 3-capturing. Then there is a

Suslin tree.

This Theorem gives us another proof of the following Corollary.

Corollary 1.30. Assume MAω1. There are no 3-capturing construction schemes.

Recal that Corollary 1.30 was proved in Chapter 1 directly. In Chapter 2 we saw a different

proof: If there are 3-capturing construction schemes then MAω1(K2) fails. We present another

proof viaTheorem 3.1 and the following well known fact.

Lemma 3.6. Assume MAω1. There are no Suslin trees.

Proof. Let (S,�) be a tree of height ω1 such that for every t ∈ S and every α < ω, there is some

s ∈ S with Lev(s) > α and t � s. Every Suslin tree contains a Suslin tree with this property.

Let P = (S,�). We show that forcing with P adds an uncountable chain to S. Define

Dα = {t ∈ S : Lev(t) > α}. The property of S shows that Dα is dense for every α < ω1.

Therefore, any {Dα : α < ω1}-generic filter G will be an uncoutable chain of S.

If S is a Suslin tree, then P has the ccc, otherwise S contains an uncountable antichain, and

MAω1 forces an uncountable chain for S.

Let us go into the idea behind the proof of Theorem 3.1 before we go into the details.
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3.1.1 Outline of the construction

We start with F , a 3-capturing construction scheme, and we want to construct S ⊂ {0, 1}ω1

a Suslin tree. We do this by recursively defining finite approximations on {0, 1}F for every

F ∈ F .

More precisely; for every F ∈ F and every α ∈ F , we construct functions fFα , g
F
α : F → {0, 1}

such that

1. fFα � α = gFα � α

2. fFα (α) = 0, gFα (α) = 1.

We want the functions to be isomorphic and coherent:

3. If E,F ∈ Fk, α ∈ E and ᾱ = ϕE,F (α) then, fFᾱ = ϕE,F (fEα ) and gFᾱ = ϕE,F (gEα ).

4. If E ⊂ F , then for every α ∈ E we have

fEα ⊂ fFα and gEα ⊂ gFα

We can now define hα =
⋃
F∈F ,α∈F fα � α =

⋃
F∈F ,α∈F gα � α, and then (hα : α < ω) is

such that

hα � F = fFα � (α ∩ F ) = gFα � (α ∩ F ) for every F ∈ F with α ∈ F (3.1)

Note that hα : α → {0, 1} and is well defined by the properties of a construction scheme

(Definition 1.32 and Lemma 1.33), and (1)–(4) above. Now let

S = (hα � δ : δ ≤ α < ω1) (3.2)

then S is our candidate for Suslin tree.

To recall, we have to construct (fFα , g
F
α : α ∈ F, F ∈ F) with properties (1)–(4), and show

that S defined as above is a Suslin tree. We do that now.

3.1.2 Proof of Theorem 3.1

We construct (fFα , g
F
α : α ∈ F, F ∈ F) by recursion on F .

For F ∈ F0 we have F = {α} and we let fFα (α) = 0 and gFα (α) = 1.

Let F ∈ Fk with k > 0, R(F ) = R. Suppose F =
⋃
i<nk

Fi, the canonical decomposition of

F , and for all i < nk, f
Fi
α , g

Fi
α are defined for all α ∈ Fi satisfying (1)–(4). Let ϕi : F0 → Fi be

the increasing bijection between F0 and Fi.

For α ∈ R, let fFα =
⋃
i<nk

ϕi(f
F0
α ) and gFα =

⋃
i<nk

ϕi(g
F0
α ).
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For δ ∈ F2i \R and δ = ϕ2i(α) for some α ∈ F0 let

fFδ =
⋃
j≤2i

ϕj(f
F0
α ) ∪

⋃
2i<j<nk

ϕj(g
F0
α )

gFδ =
⋃
j<2i

ϕj(f
F0
α ) ∪

⋃
2i≤j<nk

ϕj(g
F0
α )

For δ ∈ F2i+1 \R and δ = ϕ2i+1(α) for some α ∈ F0 let

fFδ =
⋃

j<2i+1

ϕj(g
F0
α ) ∪

⋃
2i+1≤j<nk

ϕj(f
F0
α )

gFδ =
⋃

j≤2i+1

ϕj(g
F0
α ) ∪

⋃
2i+1<j<nk

ϕj(f
F0
α )

By the construction it follows that for every i < nk and every α ∈ Fi, fFiδ ⊂ fFδ and gFiα ⊂ gFα .

Also, if F,E ∈ Fk, F =
⋃
i<nk

Fi, and E =
⋃
i<nk

Ei are the canonical decompositions of F and

E respectively. Then, by hypothesis, if α ∈ Ei and ᾱ = ϕEi,Fi(α) we have fFiᾱ = ϕEi,Fi(f
Ei
α ),

and the same for gEiα and gFiᾱ . Then for α ∈ E, ᾱ = ϕE,F we have fFᾱ = ϕE,F (fEα ) and

gFᾱ = ϕE,F (gEα ). So conditions (1)–(4) are satisfied. This finishes the recursion.

Define hα : α → {0, 1} by hα =
⋃
F∈F ,α∈F fα � α =

⋃
F∈F ,α∈F gα � α. Then (hα : α < ω1)

satisfies (3.1). So we are in position to define S ⊂ 2<ω1 as in (3.2). Now S is a Suslin tree.

Claim 3.7. If F is a 3-capturing construction scheme, then S is a Suslin tree.

Proof. It is clear that S has height ω1 since for every α < ω1, hα ∈ S. Next we see that S has

neither uncountable antichains not uncountable chains.

Let W = (hα � δα : δα ≤ α, α ∈ Γ) ⊂ S with Γ ⊂ ω1 uncountable.

There are α < β in Γ and F ∈ F such that F captures α and β. In particular β = ϕ1(α)

and then hα ⊂ hβ which implies (hα � δα) 6⊥ (hβ � δβ). This implies S has no uncountable

antichains.

In particular, the levels of S are countable and we can find an uncountable Γ0 ⊂ Γ such

that for every α < β in Γ0, α < δβ. Let F ∈ F , 3-capture Γ0. Thus there are α0 < α1 < α2

in Γ0 captured by F =
⋃
i<nk

Fi. By equation (3.1) we have that hα1(α0) = gF0
α0

(α0) = 1

and hα2(α0) = fF0
α0

(α0) = 0 and since α0 < δα1 , δα2 then hα1 ⊥ hα2 . Thus S does not have

uncountable chains.

We showed that S is a Suslin tree. This finishes the proof of Theorem 3.1

3.2 A Haudorff T-gap

In this section we construct a T-gap by recursion on F . The structure of the proof is similar

to the construction of a Suslin tree on the previous section. We will use F to recursively define
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finite approximations to our T-gap. After the construction is complete we will use 3-capturing

to show it has the T-gap property.

Theorem 3.3. Assume there is a 3-capturing Construction Scheme. Then there is a (ω1, ω1)-

gap that is a T-gap and so, in particular there is (ω1, ω1)-gap that can be filled in a forcing

extension over a partially ordered set satisfying the countable chain condition.

Proof of Theorem 3.3. Let F be a 3-capturing construction scheme. We define a sequence

(Nk)k<ω in ω and (aFα , b
F
α : α ∈ F ) such that

1. For F ∈ Fk and every α ∈ F , aFα , b
F
α ⊂ Nk and aFα ∩ bFα = ∅.

2. For E,F ∈ Fk, if α ∈ E and ᾱ = ϕE,F (α) then

aEα = aFᾱ

bEα = bFᾱ

3. If E ⊂ F with E ∈ Fl, F ∈ Fk and l ≤ k, then

(a) For every α ∈ E, aFα ∩Nl = aEα and bFα ∩Nl = bEα .

(b) For every α < β in E, aFα \Nl ⊂ aFβ and bFα \Nl ⊂ bFβ .

(c) For every α, β ∈ E, aFα ∩ bFβ ⊂ Nl.

The construction is as follows. For F ∈ F0 we have F = {α} for some α < ω1, let aFα = {0}
and bFα = {1} and N0 = 2.

Suppose that (aEα , b
E
α : α ∈ E,E ∈ Fl, l < k) satisfies (1)–(3). For F ∈ Fk, if

F =
⋃
i<n

Fi is the canonical decomposition of F .

We define (aFα , b
F
α : α ∈ F ) as follows

For α ∈ R(F ) let aFα = aF0
α and bFα = bF0

α .

For δ ∈ F2i \R(F ) and δ = ϕ2i(α) for some α ∈ F0 let

aFδ = aF0
α ∪ {Nk−1}

bFδ = bF0
α ∪ {Nk−1 + 1}

For δ ∈ F2i+1 \R(F ) and δ = ϕ2i+1(α) for some α ∈ F0 let

aFδ = aF0
α ∪ {Nk−1 + 1}

bFδ = bF0
α ∪ {Nk−1}
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Finally let Nk = Nk−1 + 2.

It is clear that aFα , b
F
α ⊂ Nk and aFα ∩ bFα = ∅ so (1) holds. If E ∈ Fk with canonical

decomposition E =
⋃
i<nk

Ei, then for every α ∈ Ei and ᾱ = ϕEi,Fi(α), we have

aEiα = aFiᾱ and bEiα = bFiᾱ

and then (2) holds as well. Notice that aFα ∩ Nk−1 = aFiα for some i < nk, and for every

α < β ∈ Fi we have aFα \Nk−1 = aFβ \Nk−1 and the same for bFα . So property (3) holds. This

finishes the recursion.

For α < ω1 let

aα =
⋃

F∈F ,α∈F
aFα bα =

⋃
F∈F ,α∈F

bFα

Conditions (1)–(3) imply that for every α < ω1, aα ∩ bα = ∅, for every α < β, if k < ω is

large enough (meaning there is F ∈ Fk with α, β ∈ F ) then aα \ Nk ⊂ aβ and bα \ Nk ⊂ bβ.

Also, for α, β < ω1 and k < ω large enough aα ∩ bβ ⊂ Nk. This shows that (aα, bα)α<ω1 is a

pre-gap.

We use Definition 3.2 to see that (aα, bα)α<ω1 is a T-gap. In orther words we want to show

that, given Γ ⊂ ω1 uncountable we can find αi < βi in Γ for i = 0, 1, such that aα0 ∩ bβ0 6= ∅,
and aα1 ⊂ aβ1 , bα1 ⊂ bβ1 .

Let Γ ⊂ ω1 uncountable. Since F is 3-capturing there is F ∈ Fk and ξ0 < ξ1 < ξ2 in Γ

captured by F i.e, ξi ∈ Fi \R(F ) for i < 3 and ξj = ϕj(ξ0) for j = 1, 2. By the construction of

aξi , bξi , i = 0, 1, 2, we have that aξi ∩Nk = aFξi and bξi ∩Nk = bFξi . This and (b) of (3) give

aξ0 ∩ bξ1 6= ∅ (3.3)

aξ0 ⊂ aξ2 and bξ0 ⊂ bξ2 (3.4)

Thus we can take αi = ξ0 for i = 0, 1 and β0 = ξ1 and β1 = ξ2. And so equation (3.3) implies

(aα, bα)α<ω1 is a gap and by (3.4) it is a T-gap as we wanted to see.

3.3 Using Partitions to Capture

It turns out that we can improve the results in the previous sections if we use the partition

version of capturing. We construct first a Suslin Tree, however instead of needing 3-capturing

as in the previous section, all we need now is 2-~P -capturing. We also present analogous results

for T-gaps, given a 2-~P -capturing construction scheme we can construct a T-gap.

Let us recall the definition of partition capturing before we apply it.

Definition 3.8. Let ω =
⋃
`<ω P` be a partition of ω into infinite components and let ~P =

(P` : ` < ω). Suppose (mk, nk, rk) forms a type such that for every ` < ω, and every r < ω

there are infinitely many k’s in P` with rk = r. Then we say (mk, nk, rk)k forms a ~P -type.



3.3. Using Partitions to Capture 59

Definition 3.9. Let F be a construction scheme with type (mk, nk, rk)k, and 2 ≥ n. We say F
is n-~P -capturing if (mk, nk, rk)k forms a ~P -type, and for every uncountable ∆-system (sξ)ξ<ω1

of finite subsets of ω1 with root s, and every ` < ω, there are ξ0 < . . . < ξn−1 < ω1, k ∈ P` and

F ∈ Fk with canonical decomposition F =
⋃
i<nk

Fi, such that

s ⊂ R(F )

for every i < n, sξi \ s ⊂ Fi \R(F ),

for every i < n, ϕi(sξ0) = sξi .

We say F is ~P -capturing if F is n-~P -capturing for every n < ω.

We construct first a Suslin tree.

Theorem 3.10. Let ω =
⋃
`<ω P`, be a partition of ω into infinite pieces, and let ~P = (P` : ` <

ω). Assume there is a Construction Scheme that is 2-~P -capturing, then there is a Suslin tree.

Proof. We construct (fFα , g
F
α : α ∈ F, F ∈ F) as above.

For F ∈ F0 we have F = {α} and we let fFα (α) = 0 and gFα (α) = 1.

Let k ∈ P`, and F ∈ Fk with k > 0. Suppose F =
⋃
i<nk

Fi, the canonical decomposition

of F , and for all i < nk, f
Fi
α , g

Fi
α are defined for all α ∈ Fi satisfying (1)–(4) from Theorem 3.1.

Let ϕi : F0 → Fi be the increasing bijection between F0 and Fi.

For α ∈ R(F ), let fFα =
⋃
i<nk

ϕi(f
F0
α ) and gFα =

⋃
i<nk

ϕi(g
F0
α ).

If ` is even then

If δ ∈ F2i \R and δ = ϕ2i(α) for some α ∈ F0 let

fFδ =
⋃
j≤2i

ϕj(f
F0
α ) ∪

⋃
2i<j<nk

ϕj(g
F0
α )

gFδ =
⋃
j<2i

ϕj(f
F0
α ) ∪

⋃
2i≤j<nk

ϕj(g
F0
α )

For δ ∈ F2i+1 \R and δ = ϕ2i+1(α) for some α ∈ F0 let

fFδ =
⋃

j<2i+1

ϕj(g
F0
α ) ∪

⋃
2i+1≤j<nk

ϕj(f
F0
α )

gFδ =
⋃

j≤2i+1

ϕj(g
F0
α ) ∪

⋃
2i+1<j<nk

ϕj(f
F0
α )

Otherwise, ` is odd, then,
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If δ ∈ Fi \R and δ = ϕi(α) for some α ∈ F0 let

fFδ =
⋃
j≤i

ϕj(f
F0
α ) ∪

⋃
i<j<nk

ϕj(g
F0
α )

gFδ =
⋃
j<i

ϕj(f
F0
α ) ∪

⋃
i≤j<nk

ϕj(g
F0
α )

Now, instead of using equation (3.1) to define hα : α→ 2. We let hα : α+ 1→ 2.

hα = fα � (α+ 1) for every F ∈ F with α ∈ F .

Now we let

S = {hα � δ : δ ≤ α+ 1 < ω1}

This defines S. To see that S is a Suslin tree we proceed as in Theorem 3.1.

Let W = (hα � δα : δα ≤ α + 1, α ∈ Γ), with Γ ⊂ ω1 uncountable, be an uncountable

subset of S. We use 2-~P -capturing to find α0 < α1 in Γ and F ∈ Fk with k ∈ P1, such

that F captures α0 and α1. Since ` = 1 is odd, we have hα0 ⊂ hα1 by definition therefore

(hα0 � δα0) 6⊥ (hα1 � δα1).

Thus S has no uncountable antichains, therefore the levels of S are countable. This means

we can assume that α < δβ for all α < β in Γ. Also, without loss of generality, we can assume

that δα = α + 1 for every α ∈ Γ. Indeed suppose δα < α + 1 for every α ∈ Γ, by the Pressing

Down Lemma we can find an uncountable Γ0 ⊂ Γ such that δα = δβ for all α, β ∈ Γ0. But then

we can find α < β in Γ0 such that α ≥ δβ, which is a contradiction.

So we assume δα = α + 1 for every α ∈ Γ. Now we use 2-~P -capturing to find ξ0 < ξ1

in Γ and F ∈ Fk with k ∈ P2, such that F captures ξ0 < ξ1. Since ` = 2 is even, then we

have hξ0(ξ0) = fFξ0(ξ0) = 0, and hξ1(ξ0) = fFξ1(ξ0) = gF0
ξ0

(ξ0) = 1. Therefore W cannot be an

uncountable chain.

This finishes the proof.

As a Corollary we also have the following result.

Corollary 3.11. Assume MAω1. There are no 2-~P -capturing construction schemes for any

partition ~P .

Now we show how to construct Hausdorff T-gaps from a 2-~P -capturing construction scheme.

Theorem 3.12. Let ω =
⋃
`<ω P` be a partition of ω into infinite components, and set ~P =

(Pn : n < ω). Assume there is a Construction Scheme that is 2-~P -capturing, then there is a

T-gap.

Proof. We follow the previous construction. For F ∈ F0 we have F = {α} for some α < ω1, let

aFα = {0} and bFα = {1} and N0 = 2.



3.4. Hausdorff T-gaps versus Hausdorff S-gaps 61

Suppose that (aEα , b
E
α : α ∈ E,E ∈ Fl) for l < k satisfies (1)–(3) from the proof of Theo-

rem 3.3. Take ` < ω such that k ∈ P`, and let F ∈ Fk be given, if

F =
⋃
i<n

Fi is the canonical decomposition of F .

If ` is even, define (aFα , b
F
α : α ∈ F ) as follows

For α ∈ R(F ) let aFα = aF0
α and bFα = bF0

α .

For δ ∈ F2i \R(F ) and δ = ϕ2i(α) for some α ∈ F0 let

aFδ = aF0
α ∪ {Nk−1}

bFδ = bF0
α ∪ {Nk−1 + 1}

For δ ∈ F2i+1 \R(F ) and δ = ϕ2i+1(α) for some α ∈ F0 let

aFδ = aF0
α ∪ {Nk−1 + 1}

bFδ = bF0
α ∪ {Nk−1}

Otherwise, ` is odd, and we define (aFα , b
F
α : α ∈ F ) as

For α ∈ R(F ) let aFα = aF0
α and bFα = bF0

α .

For δ ∈ Fi \R(F ) and δ = ϕi(α) for some α ∈ F0 let

aFδ = aF0
α ∪ {Nk−1}

bFδ = bF0
α ∪ {Nk−1 + 1}

Finally let Nk = Nk−1 + 2.

Given Γ ⊂ ω1 uncountable. We can find ξ0 < ξ1 in Γ and F ∈ Fk with k ∈ P2 such that F

captures ξ0 and ξ1. Since ` = 2 is even, we have Nk−1 ∈ aFξ0 ∩ bFξ1 . Thus (aα, bα : α < ω1) is a

gap.

On the other hand, we can also find α0 < α1 in Γ and F ∈ Fk with k ∈ P1 such that F

captures α0 and α1. Then, since ` = 1 is odd, we have aα0 ⊂ aα1 and bα0 ⊂ bα1 . Therefore

(aα, bα : ω1) is a T-gap.

3.4 Hausdorff T-gaps versus Hausdorff S-gaps

Recall that an S-gap is a destructible gap, i.e, a gap which can be split by a ccc forcing. The

purpose of this Section is to prove the following.
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Theorem 3.5. There is a model in which there is an S-gap but which does not have any T-gaps.

Proof. We start with a ground model in which GCH holds and has an S-gap.

Let (aα, bα)α<ω1 be a gap with the property that aβ 6⊂ aα for any α < β < ω1. It is clear

that every gap is equivalent to a gap with this property. Let A = (aα)α<ω1 and consider the

following forcing notion

PA = {p ∈ [A]<ω : (∀x 6= y ∈ p) x 6⊂ y and y 6⊂ x}

ordered by reversed inclusion.

Claim 3.13. PA is ccc.

Proof. Let (pα)α<ω1 . Applying the ∆-system Lemma we can assume that the pα’s are a disjoint

with |pα| = n and pα = (xα,i)i<n for every α < ω1 where we preserved the natural order in A.

This implies that xβ,j 6⊂ xα,i for α < β and i, j < n.

Let M be a countable elementary submodel of Hc+ and γ = ω1 ∩M .

Take β > γ and fix k < ω such that

xβ,i ∩ k 6⊂ xγ,i ∀i < n. (3.5)

Consider Γ = {α < ω1 : xα,i ∩ k = xβ,i ∩ k ∀i < n}, then Γ ∈ M and β ∈ Γ. Therefore Γ

is uncountable. Take α ∈M ∩ Γ, by (3.5)

xα,i 6⊂ xγ,i ∀i < n

and pα ∪ pγ ∈ PA witness pα 6⊥ pγ .

We will force a model where MAω1 holds for a forcing of the form PA. First, fix a bijective

mapping π : ω2 → ω2 × ω2 where π(α) = (β, γ) with β ≤ α. This is the usual book keeping

mapping. Suppose we have Pλ = 〈Pα, Q̇α : α < λ〉 a finite support iteration with

Pα 
 “Q̇α = PȦ if Ȧ is a gap”.

for some Ȧ ∈ V Pα . Then, in V Pλ there are ℵ2 many names for gaps (by GCH), and we can fix

a well-ordering of them. If π(λ) = (β, γ), let Ȧ be the γth name for a gap in V Pβ . If Ȧ is a gap

in V Pλ then let Q̇λ = PȦ.

Claim 3.14. The finite support iteration Pω2 is ccc and forces MAω1 for orderings of the form

PA.

Proof. Let A and ~D = (Dα : α < ω1) be a gap and a collection of dense sets of PȦ in V [Gω2 ]

respectively. Then, there is λ < ω2 such that both A and ~D are in V [Gλ]. Since A is a gap in

V [Gω2 ] then is a gap in V [Gλ] and there is ξ ≥ λ such that π(ξ) = (λ, γ) and the γth name in
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V Pλ is a name for A. It follows that there is a ~D-generic filter in V [Gξ+1] ⊂ V [Gω2 ] and the

proof is finished.

This applied to a gap (aα, bα)α<ω1 forces Γ ⊂ ω1 uncountable without the property in

Definition 3.3. This shows that there are no T-gaps. Thus, the proof is finished once we show

the following.

Claim 3.15. Forcing with PA preserves S-gaps.

Proof. Suppose that one PA kills an S-gap (aα, bα)α<ω1 .

Then PA forces Γ̇ ⊂ ω1 uncountable without property (3) of Proposition 1.13 i.e, for every

α < β

PA 
 α, β ∈ Γ̇⇒ (aα ∩ bβ) ∪ (aβ ∩ bα) 6= ∅

Since Γ̇ is uncountable we can find (in the ground model) Γ ⊂ ω1 uncountable and (pα :

α ∈ Γ) ⊂ PA such that

pα 
 α ∈ Γ̇

In particular, we have

∀α < β ∈ Γ
(

(aα ∩ bβ) ∪ (aβ ∩ bα) = ∅ =⇒ pα ∪ pβ /∈ PA

)
(3.6)

We may assume that the pγ ’s are disjoint and that they all have some fixed size n and

pα = (xα,i)i<n preserves the natural order in A.

Choose a countable elementary sub-model M of Hc+ containing all these objects and let

γ = min(Γ \M).

Since (aα, bα)α<ω1 is an S-gap, the elementarity of M gives us the existence of a β ∈ Γ above

γ such that

aβ ∩ bγ = ∅ and aγ ∩ bβ = ∅ (3.7)

Choose k < ω such that

aγ \ k ⊆ aβ and bγ \ k ⊆ bβ (3.8)

∀x ∈ pγ ∀y ∈ pβ y ∩ k 6⊆ x ∩ k (3.9)

Let s = aβ ∩ k, t = bβ ∩ k and

Γ0 = {α ∈ Γ : aα ∩ k = s bα ∩ k = t xα,i ∩ k = xβ,i ∩ k(i < n)}

Then Γ0 ∈ M and β ∈ Γ0 \M so Γ0 is an uncountable subset of Γ. Since (aα, bα)α<ω1 is a

S-gap there must exist α ∈ Γ0 ∩M such that

aα ∩ bβ = ∅ aβ ∩ bα = ∅ (3.10)
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Combining equations (3.7),(3.8) and (3.10) we obtain that

aα ∩ bγ = ∅ aγ ∩ bα = ∅ (3.11)

Form the fact that α ∈ Γ0 and by (3.9) we conclude that

∀x ∈ pγ ∀y ∈ pα y 6⊆ x (3.12)

Thus pα ∪ pγ ∈ PW , contradicting (3.6).

The previous claim also implies that if Pα preserves S-gaps, then so does Pα+1. Suppose

now Pα preserves S-gaps for every α < λ ≤ ω2, with λ limit. If Pλ kills an S-gap, applying

the ∆-system lemma (or a counting argument in case α has countable cofinality) we find η < λ

such that Pη kills an S-gap. Contradiction, thus Pλ also preserves S-gaps.

This shows that V [Gω2 ] contains an S-gap, since V does and Pω2 preserves it, and there are

no T-gaps in V [Gω2 ] which finish the proof.

Remark 3.1. The method above answers a particular case of Problem 59 of [BNC15]. Partic-

ularly, it produces a model of with no Suslin towers but destructible gaps.

It can be seen that the model V [Gω2 ] also contains Suslin trees and it has no 3-capturing

construction schemes.



Chapter 4

Constructions of Banach spaces

The purpose of this Chapter is to apply the construction scheme to the theory of nonseparable

Banach spaces inspired by the forcing constructions of Bell, Ginsburg and Todorčević [BGT82],

and López-Abadand Todorčević [LAT11]. The class of nonseparable Banach spaces exhibit

phenomena which are not present in the more studied class of separable Banach spaces. Some

of the most striking differences appear on J. López-Abadand S. Todorčević[LAT11] where they

developed forcing constructions of Banach spaces via finite-dimensional approximations. Here

are two examples from [LAT11]

Theorem 4.1 (Theorem 4.5 of [LAT11]). For every ε > 0 rational, there is a poset Pε which

forces a Banach space Yε with an uncountable ε-biorthogonal system and such that for every

0 ≤ τ < ε
1+ε , Yε has no uncountable τ -biorthogonal system.

Theorem 4.2 (Theorem 6.4 of [LAT11]). For every constant K > 1 there is a poset PK which

forces a Banach space YK with an uncountable K-basis yet for every 1 ≤ K ′ < K, YK has no

uncountable K ′-basic sequences.

Recall that none of these two phenomena can happen in the class of separable Banach spaces

when, of course, we replace ‘uncountable’ by ‘infinite’ since every infinite dimensional space has

a basic sequence, hence it has a biorthogonal system. Also, the previous spaces, or other spaces

with the same properties cannot exists on a model of PFA by the following result of Todorčević.

Theorem 4.3 (Todorčević [Tod06]). Assume PFA. Every Banach space X of density ℵ1 has

an uncountable Biorthogonal System.

We use capturing construction schemes to build norming sets and define nonseparable Ba-

nach spaces. The main results of this Chapter are the following Theorems.

Theorem 4.4. Assume there is a capturing construction scheme F . Then for every ε ∈ (0, 1)∩
Q, there is a Banach space Xε with an uncountable ε-biorthogonal system but no uncountable

τ -biorthogonal system for every 0 ≤ τ < ε
1+ε .

65
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Theorem 4.5. Assume there is a capturing construction scheme F . Then for every constant

K > 1, there is a Banach space XK with a K-basis of length ω1 but no uncountable K ′-basic

sequence for every 1 ≤ K ′ < K.

In each case the construction is based on a single rule of multiple amalgamation of a family

of finite-dimensional Banach spaces indexed by F . This adds not only to the clarity over the

corresponding forcing constructions but it also gives us Banach spaces that could be further

easily analyzed. In fact neither the construction nor the analysis of the corresponding examples

require any expertise outside the Banach space geometry.

It is interesting to compare our examples with the corresponding examples in [LAT11].

Given an uncountable sequence of forcing conditions, take an uncountable ∆-subsequence where

all conditions are isomorphic and find a condition which amalgamates finitely many of these

forcing the desired inequality. Thus, the use of forcing allows us to amalgamate a posteriori

since the generic filter G takes care of all the possible ∆-systems whose roots belong to G .

However in our recursive construction the amalgamations must be done a priori which limits

the class of possible amalgamations. In fact since we do a single amalgamation at any given

level of F , our spaces tend to be considerably more homogeneous and therefore much easier to

analyze.

This Chapter is structured in the following way: We start with a result of Todorčević [Tod17]

that illustrates how capturing construction schemes can be used to construct Banach spaces.

The use of a ~P -capturing construction scheme is used to build a C(K) Banach space that has

no uncountable biorthogonal systems.

On Section 4.2 we give an outline of the constructions of Xε and XK . The aim is to point out

how the construction of Banach spaces with properties independent of ZFC can be systematize,

and the Set Theory necessary to carry out this constructions is not a lot.

In Section 4.3 we give a proof of Theorem 4.4 and study some of the geometric properties

of Xε.
We finish the Chapter with Section 4.4, where we prove Theorem 4.5.

4.1 First Applications to Banach spaces

We want to present the first application of capturing construction schemes to Banach spaces

due to Todorčević [Tod17]. It illustrates the method that we will use to prove Theorem 4.4 and

Theorem 4.5. Our aim is to convince the reader of the flexibility of this method to construct

nonseparable Banach spaces.

The following concept was introduced by Rolewicz [Rol78]

Definition 4.6. Let C ⊂ X be nonempty, convex, and closed. We say C is a support set if for

every point x ∈ C there is a x∗ ∈ X ∗ such that x∗(x) = inf{x∗(y) : y ∈ C} < sup{x∗(z) : z ∈ C}.
There is a relation between support set and uncountable biorthogonal systems. To make

this relation precise we need a new definition.
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Definition 4.7. Let X be a Banach space, a sequence (yα, y
∗
α)α<ω1 is called a semibiorthogonal

system if the following conditions hold:

1. For every α < ω1, y∗α(yα) = 1,

2. for every α < β < ω1, y∗β(yα) = 0, and

3. for every α < β < ω1, y∗α(yβ) ≥ 0.

We have the following relation.

Theorem 4.8 (Borwein and Vanderwerff [BV96]). Let X be a Banach space, then X has a

support set if and only if it has an uncountable semi-biorthogonal system.

Theorem 4.9 (Todorčević [Tod17]). Assume there is a ~P -capturing construction scheme F .

There is a compact space K such that C(K) does not have uncountable semi-biorthogonal se-

quences. In particular C(K) contains no supported closed convex subsets.

Proof. Fix F , a ~P -capturing construction scheme. We construct K as a subset of {0, 1}ω1 and

endow K with the induced product topology. For every F ∈ F we define KF ⊂ {0, 1}F and

(fFα , g
F
α : α ∈ F ) with the following properties:

(i) For α ∈ F we have fFα � α = gFα � α, fFα (α) = 0, and gFα (α) = 1,

1. For F,E ∈ Fk the spaces KF and KE are homeomorphic via the mapping f ∈ KF 7→
f ◦ ϕ−1

F,E , and

2. For F,E ∈ F with E ⊂ F we have KE ⊂ KF .

Now we define KF by recursion on F ∈ F . For α < ω1 and F = {α} ∈ F0, we define

K{α} = {fFα , gFα }. Where fFα (α) = 0 and gFα (α) = 1.

Suppose now F ∈ Fk with canonical decomposition F =
⋃
i<nk

Fi and we have constructed

KFi = {fFiα , gFiα : α ∈ Fi} for i < nk, so they satisfy (i)–(iii).

Suppose k ∈ P` with nk < 3`. Then we let KF contain the following functions.

1. For α ∈ F0, define

fFα :=fF0
α +

∑
0<i<nk

ϕi(f
F0
α � (Fi \ F0)

gFα :=gF0
α +

∑
0<i<nk

ϕi(g
F0
α � (Fi \ F0)

2. For α ∈ Fi \R(F ) with 0 < i ≤ nk, let δ ∈ F0 \R(F ) with ϕi(δ) = α, then

fFα :=fF0
δ + fFiα +

∑
0<j<nk
j 6=i

ϕj(f
F0
δ ) � (Fj \ F0)

gFα :=fF0
δ + gFiα +

∑
0<j<nk
j 6=i

ϕj(f
F0
δ ) � (Fj \ F0)
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Suppose otherwise k ∈ P` with nk ≥ 3`. Then we let KF contain the following functions.

1. For α ∈ F0, define

fFα :=fF0
α +

∑
0<i<nk

ϕi(f
F0
α � (Fi \ F0)

gFα :=gF0
α +

∑
0<i<nk

ϕi(g
F0
α � (Fi \ F0)

2. For α ∈ Fi \R(F ) with 0 < i ≤ nk and i 6= 2`, let δ ∈ F0 \R(F ) with ϕi(δ) = α, then

fFα :=fF0
δ + fFiα +

∑
0<j<nk
j 6=i

ϕj(f
F0
δ ) � (Fj \ F0)

gFα :=fF0
δ + gFiα +

∑
0<j<nk
j 6=i

ϕj(f
F0
δ ) � (Fj \ F0)

3. For α ∈ F2` \R(F ), let δ ∈ F0 \R(F ) with ϕ2`(δ) = α, then

fFα :=
(
fF0
δ + ϕ1(gF0

δ )
)

+
∑
j<`

((
ϕ2j(f

F0
δ ) � (Fj \ F0)

)
+
(
ϕ2j+1(gF0

δ ) � (Fj \ F0)
))

+ fF2`
α +

∑
j>2`

ϕj(g
F0
δ ) � (Fj \ F0)

gFα :=
(
fF0
δ + ϕ1(gF0

δ )
)

+
∑
j<`

((
ϕ2j(f

F0
δ ) � (Fj \ F0)

)
+
(
ϕ2j+1(gF0

δ ) � (Fj \ F0)
))

+ gF2`
α +

∑
j>2`

ϕj(f
F0
δ ) � (Fj \ F0)

It is clear by the construction that KF = {fFα , gFα : α ∈ F} defined as above satisfy

conditions (i)–(iii). This finishes the construction of K.

Suppose C(K) has an uncountable semi-biorthogonal sequence (yα, µα)α<ω1 . We can assume

the yα’s are normalized. Then µα are operators on C(K) such that:

1.

∫
yαdµα = 1 for every α < ω1,

2.

∫
yαdµβ = 0 for every α < β < ω1, and

3.

∫
yβdµα ≥ 0 for every α < β < ω1.

Lemma 4.10. There is Γ ⊂ ω1 uncountable and n < ω, such that for every α0 < . . . α3n in Γ

we have: ∥∥∥∥∥−
2n−1∑
i=0

yαi + nyα2n +
3n∑

i=2n+1

yαi

∥∥∥∥∥ ≥ 4
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Proof. Let N < ω and Γ ⊂ ω1 uncountable such that

sup
α∈Γ
‖µα‖ ≤ N

Then∥∥∥∥∥−
2n−1∑
i=0

yαi + nyα2n +
3n∑

i=2n+1

yαi

∥∥∥∥∥ ≥
∣∣∣∣∣ 1

N

∫ (
−

2n−1∑
i=0

yαi + nyα2n +
3n∑

i=2n+1

yαi

)
dµα2n

∣∣∣∣∣
=

1

N

∫ (
−

2n−1∑
i=0

yαi

)
dµα2n +

n

N

∫
yα2ndµα2n +

1

N

∫ ( 3n∑
i=2n+1

yαi

)
dµα2n

≥ 0 +
n

N
+ 0 =

n

N

Because of the properties of µα2n . Take n ≥ 4N and we get the result.

We finish the proof by showing that

Lemma 4.11. For every normalized uncountable sequence (yα)α∈Γ in C(K) and n < ω. There

are α0 < . . . < α3n in Γ such that∥∥∥∥∥−
2n−1∑
i=0

yαi + nyα2n +
3n∑

i=2n+1

yαi

∥∥∥∥∥ ≤ 3

Let D be the algebra of all functions in C(K) generated by the constant function, and the

functions of the form δα(h) = h(α), where h ∈ K and α < ω1. Then D is dense in C(K) by the

Stone-Weierestrass Theorem. For α ∈ Γ let xα ∈ D normalized with rational coefficients such

that

‖xα − yα‖ <
1

4n

Then for every α0 < . . . < α3n in Γ we have∥∥∥∥∥−
2n−1∑
i=0

yαi + nyα2n +

3n∑
i=2n+1

yαi

∥∥∥∥∥ ≤
∥∥∥∥∥−

2n−1∑
i=0

xαi + nxα2n +
3n∑

i=2n+1

xαi

∥∥∥∥∥+ ∑
i≤3n
i 6=2n

‖yαi − xαi‖+ n‖yα2n − xα2n‖

<

∥∥∥∥∥−
2n−1∑
i=0

xαi + nxα2n +

3n∑
i=2n+1

xαi

∥∥∥∥∥+ 3n

4n
+

n

4n

=

∥∥∥∥∥−
2n−1∑
i=0

xαi + nxα2n +

3n∑
i=2n+1

xαi

∥∥∥∥∥+ 1

Thus is enough to show:∥∥∥∥∥−
2n−1∑
i=0

xαi + nxα2n +
3n∑

i=2n+1

xαi

∥∥∥∥∥ ≤ 2
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To see this is true, consider (supp(xα) : α < ω1). By going to an uncountable subsequence,

we can assume that:

1. The sequence (supp(xα) : α < ω1) forms an increasing ∆-System and

2. For every α < β, xα is isomorphic to xβ. This means that, if ϕαβ : supp(xα)→ supp(xβ)

is the increasing bijection. Then xβ = xα ◦ ϕ−1
αβ .

Since F is a ~P -capturing construction scheme, we can find k ∈ Pn0 , F ∈ Fk, and α0 < . . . <

α3n0 < ω1 such that F captures (supp(xαi) : i ≤ 3n0). Let

w = −
2n0−1∑
i=0

xαi + n0xα2n0
+

3n0∑
i=2n0+1

xαi

To finish the proof we have to show that |w(h)| ≤ 2 for every h ∈ K. Since supp(w) ⊂ F it is

enough to show that |w(h) ≤ 2 for every h ∈ KF . Note that F ∈ Fk, k ∈ Pn0 , and nk > 3n0

since F captured the ∆-System of lenght 3n0. Thus, going back to the corresponding definitions

of h ∈ KF we have that, if fFα ∈ KF is of the form 1 then

w(fα)F = (−2n0 + n0 + n0)xα0(fF0
α ) = 0

the case for gFα is analogous. If fFα ∈ KF is of the form 3, then

w(fFα ) = (−n0 + n0)xα0(fF0
δ ) + (−n0 + n0)xα0(gF0

δ ) = 0

If fFα ∈ KF is of the form 2, then w(fFα ) = 0. Finally for gα ∈ KF of the form 2, then

|w(gFα )| = |xα0(fF0
δ − gF0

δ )| ≤ 2

since xα0 has norm 1. This finishes the proof.

4.2 Outline of the proofs

The construction of the Banach spaces Xε and XK will follow an abstract approach for producing

nonseparable Banach structures.

We start with a capturing construction scheme F . First, we construct (recursively) a family

H =
⋃
F∈F HF where HF are functions f : F → [0, 1] ∩ Q. For Xε we will have HF = {hFα :

α ∈ F}. To guarantee nonseparability we want to have the following condition

hFα � α = 0 hFα (α) = 1 (4.1)
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The role of H is to be a norming set, for that we need the following coherence conditions

∀F,E ∈ F if E ⊂ F then hFα � E = hFα ∀α ∈ E (4.2)

∀F,E ∈ F if E ⊂ F then f � E ∈ conv(±HE) ∀f ∈ HF (4.3)

Let Hk =
⋃
i<k,F∈Fi HF . Suppose Hk has been defined and F ∈ Fk. Let F =

⋃
i<nk

Fi the the

canonical decomposition of F. We will define HF by amalgamating the elements of HFi(i < nk)

in such a way that (4.1), (4.2) and (4.3) holds for Xε and (4.3) for XK .

This concludes the construction of H. Next, we will define ‖ · ‖ in c00(ω1)

‖x‖ = max{|〈f, x〉| : f ∈ H} (4.4)

Note that ‖ · ‖ is well defined by (4.2) and (4.3) and by (4.1) we have ‖x‖ = 0 if and only if

x = 0 (this for the construction of Xε, for XK the vectors eα ∈ H for every α < ω1) so it defines

a norm on c00(ω1). The respective Banach space X will be the completion of (c00(ω1), ‖ · ‖).
To prove that X has indeed the properties that we want we will use the capturing of

F . Arguing by contradiction we take an uncountable sequence (yα)α<ω1 in X with a certain

property. We show (following [LAT11]) that there is an inequality that uncountably many yα’s

satisfy.

Take (xα)α<ω1 in c00(ω1,Q) approximating the yα’s and apply the ∆-System lemma and a

counting argument (this is why we take Q instead of R) to obtain Γ ⊂ ω1 uncountable such

that

1. (supp(xα) : α ∈ Γ) forms a ∆-System and

2. the xα’s are “isomorphic” in some manner.

Finding F ∈ F capturing enough xα’s we can construct vectors that contradict the inequal-

ity.

4.3 Proof of Theorem 4.4

Let us recall the following result.

Theorem 4.4. Assume there is a capturing construction scheme F . Then for every ε ∈ (0, 1)∩
Q, there is a Banach space Xε with an uncountable ε-biorthogonal system but no uncountable

τ -biorthogonal system for every 0 ≤ τ < ε
1+ε .

Let F be a capturing construction scheme and 0 < ε < 1 rational. We construct H as

outlined in 4.2.

We start with H1, which is formed by h
{α}
α taking values in {α} and sending α 7→ 1.

Suppose Hk has been built satisfying (4.1), (4.2) and (4.3). Let F ∈ Fk and F =
⋃
i<nk

Fi

the canonical decomposition of F . Then, we let HF = {hFα : α ∈ F} where hFα is define in the

following way
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1. For α ∈ R, define hFα := hF0
0 +

∑
0<i<nk

ϕi(h
F0
α ) � (Fi \ F0).

2. For α ∈ F0 \R, define

hFα := hF0
α + ε

∑
2≤i<nk

(−1)iϕi(h
F0
α ) � (Fi \ F0).

3. For δ ∈ F1 \R, and α ∈ F0 \R with ϕ1(α) = δ, define

hFδ := ϕ1(hF0
α ) + ε

∑
2≤i<nk

(−1)i+1ϕi(h
F0
α ) � (Fi \ F0).

4. For α ∈ Fj \R with 2 ≤ j < nk, define hFα = h
Fj
α .

It is clear that Hk+1 satisfies (4.1) and (4.2). Note that if E ∈ F is contained in F and

α ∈ F , there is f ∈ HE such that hFα (γ) equals either f(γ) or εf(γ) for every γ ∈ E. This

shows that (4.3) holds for Hk+1. The same observation shows

|hFα (eβ)| ≤ ε (4.5)

for all α 6= β in F .

This finishes the construction of H.

Define the norm ‖ · ‖ε as in (4.4) and let Xε be the completion of (c00(ω1), ‖ · ‖ε).
We check that Xε is as we wanted. Define hα to be the union of all (hFα : F ∈ F) which is well

defined by (4.2). By (4.5) the sequence (eα, hα)α<ω1 forms an un uncountable ε-biorthogonal

system.

Suppose (yα, y
∗
α)α<ω1 is a τ -biorthogonal system for 0 ≤ τ < ε

1+ε . We can assume that the

yα’s are normalized.

Lemma 4.12. There is Γ ⊂ ω1 uncountable and δ > 0 such that, for every n,m < ω with
m
2n = ε and every α0 < . . . < α2n+1 we have,∥∥∥∥∥(yα0 − yα1)− 1

m

n∑
i=1

(yα2i − yα2i+1)

∥∥∥∥∥
ε

≥ δ (4.6)

Proof. Let N < ω and Γ ⊂ ω1 uncountable such that

sup
α∈Γ
‖y∗α‖ ≤ N

Then ∥∥∥∥∥(yα0 − yα1)−
1

m

n∑
i=1

(yα2i − yα2i+1)

∥∥∥∥∥
ε

≥

∣∣∣∣∣fα1

N

(
(yα0 − yα1)−

1

m

n∑
i=1

(yα2i − yα2i+1)

)∣∣∣∣∣
≥ 1

N

(
1− τ − 1

m
(2nτ)

)
=

1

N

(
1− τ(1 + 2n

m
)
)
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Taking δ = 1
N (1− τ(1 + 2n

m )) = 1
N (1− τ 1+ε

ε ) > 0 we obtain the result.

Theorem 4.4 follows if we show that

Lemma 4.13. For every normalized (yα)α∈Γ in Xε, there is m,n < ω with m
2n = ε and α0 <

. . . < α2n+1 such that ∥∥∥∥∥(yα0 − yα1)− 1

m

n∑
i=1

(yα2i − yα2i+1)

∥∥∥∥∥
ε

< δ

Proof. Let m and n, big enough so that 1/m < δ/2 and m/2n = ε.

Let xα ∈ c00(ω1,Q) for α ∈ Γ normalized such that

‖yα − xα‖ε <
δ

4(n+ 1)
for every α ∈ Γ.

Note that∥∥∥∥∥(yα0 − yα1)− 1

m

n∑
i=1

(yα2i − yα2i+1)

∥∥∥∥∥
ε

≤

≤
∥∥∥∥∥(xα0 − xα1)− 1

m

n∑
i=1

(xα2i − xα2i+1)

∥∥∥∥∥
ε

+

2n+1∑
i=0

‖yα − xα‖ε

≤
∥∥∥∥∥(xα0 − xα1)− 1

m

n∑
i=1

(xα2i − xα2i+1)

∥∥∥∥∥
ε

+
δ

2

thus, it is enough to find α0 < α1 < . . . < α2n+1 in Γ such that∥∥∥∥∥(xα0 − xα1)− 1

m

n∑
i=1

(xα2i − xα2i+1)

∥∥∥∥∥
ε

<
δ

2
(4.7)

Apply the ∆-System lemma and a counting argument to find Γ0 ⊂ Γ uncountable such that

1. Let Dα = supp(xα), then the collection (Dα : α ∈ Γ0) form a ∆-System with |Dα| =

|Dβ| = d for every α, β ∈ Γ0.

2. For α, β ∈ Γ0 and ϕα,β : Dα → Dβ an increasing bijection then xβ = ϕα,β(xα).

Since F is capturing there is F ∈ F and some α0 < . . . < α2n+1 in Γ0, such that F captures

(Dαi : i ≤ 2n + 1). This means that F ∈ Fk for some k < ω (it will have to be such that

nk ≥ 2n+ 1), and for F =
⋃
i<nk

Fi is the canonical decomposition of F we have

Dαi ⊂ Fi, i ≤ 2n+ 1

ϕi(D0) = Di, i ≤ 2n+ 1
(4.8)

Let
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w = (xα0 − xα1)− 1

m

n∑
i=1

(xα2i − xα2i+1)

Note that w � R(F ) is identically zero by (4.8). We show that ‖w‖ < δ/2. Let f ∈ HF .

If f is of the form (1) it is clear that 〈f, w〉 = 0.

If f is of the form (2) then f = hFα for some α ∈ F and

〈f, w〉 = hF0
α (xα0)− ε

m

n∑
i=2

(hF0
α (xα0) + hF0

α (xα0)) = hF0
α (xα0)

(
1− ε2n

m

)
= 0

because the amalgamation for f nullifies the term in α1 and changes the sign of the other odd

terms.

If f is of the form (3) then

〈f, w〉 = −hF1
α (xα1) +

ε

m

n∑
i=2

(hF1
α (xα1) + hF1

α (xα1)) = hF1
α (xα1)

(
ε

2n

m
− 1
)

= 0

because the amalgamation for f nullifies the term in α0 and changes the sign the other even

terms

Finally if f is of the form (4) then |〈f, w〉| = | 1
m〈h

Fj
α , ϕαj (z)〉| ≤ 1

m < δ/2 as we wanted to

show. Thus, w witnesses (4.7) contradicting Lemma 4.12 and finishing the proof.

4.3.1 Some geometric properties of the space Xε
We study other properties of the space Xε. Recall that a Banach space has the Mazur Inter-

section Property if every closed convex subset is the intersection of closed balls. The following

properties are also relevant to the geometry of a Banach space.

Definition 4.14. We say a Banach space X is polyhedral if for every finite dimensional V ⊂ X ,

the unit ball of V has finitely many extremal points.

We say the norm of X depends on finitely many coordinates if for every x ∈ X \ {0} there

is η > 0 and (hi)i<n ⊂ SX ∗ such that for every w, z ∈ ηBX if hi(x + w) = hi(x + z) for every

i < n then ‖x+ w‖ = ‖x+ z‖.

For separable Banach spaces both properties agree.

Theorem 4.15 ([Fon90]). Let X be a separable Banach space. Then X has an equivalent norm

that makes it polyhedral if and only if X has an equivalent norm that depends on finitely many

coordinates.

We show the following.

Theorem 4.16. The space Xε has the following properties:

1. Xε does not have the Mazur intersection property.
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2. Xε is polyhedral.

3. ‖ · ‖ε depends only on finitely many coordinates.

Proof. We follow the proof of Theorem 4.14 of [LAT11]. Note that {hα}α<ω1 is a norming set

of BX ∗ε which is not dense on the sphere of X ∗ε so Xε does not have the Mazur intersection

property by a result of [GGS78].

Fix µ > 0 such that

µ+ ε(1 + µ) < 1

we will use the following

Claim 4.17. Let x ∈ Xε, y ∈ c00(ω1) and F ∈ F with supp(y) ⊆ F . If ‖x− y‖ε < µ‖x‖ε then

the norm of x is determined by {hα : α ∈ F}.

Proof. Let x, y and F as above and let γ /∈ F by the structure of hγ we have

|hγ(y)| ≤ ε‖y‖ε < ε(1 + µ)‖x‖ε

and then

|hγ(x)| ≤ ‖x− y‖ε + |hγ(y)| < ‖x‖ε

Suppose now V ⊂ Xε is a finite dimensional subspace and fix a normalized basis (xi)i<n.

Now let yi ∈ c00(ω1,Q) such that ‖x− y‖ε < η/n.

Then for every x =
∑

i<n aixi we have∥∥∥∥∥∑
i<n

aixi −
∑
i<n

aiyi

∥∥∥∥∥
ε

≤ max
i
ai
∑
i<n

‖xi − yi‖ε < η‖x‖ε

If we take F ∈ F such that supp(yi) ⊂ F for every i < n, then {hα : α ∈ F} contains the

extreme points of BV by Claim 4.17.

We show ‖ · ‖ε depends on finitely many coordinates. Suppose x ∈ Xε \ {0}. Find 0 < λ < 1

such that λµ < 1/3 and y ∈ c00(ω1,Q) such that ‖x − y‖ε < λµ‖x‖ε. If F ∈ F is such that

supp(y) ⊆ F then η = λµ‖x‖ε and {hα : α ∈ F} works. To see this note that for every w ∈ Xε,
if ‖w‖ε < η then ‖x+ w − y‖ε < µ‖x+ w‖ε and Claim 4.17 gives the result.

4.4 Proof of Theorem 4.5

Out aim in this section is to construct a space that would prove Theorem 4.5
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Theorem 4.5. Assume there is a capturing construction scheme F . Then for every constant

K > 1, there is a Banach space XK with a K-basis of length ω1 but no uncountable K ′-basic

sequence for every 1 ≤ K ′ < K.

Proof. The idea of the construction follows the outline of Section 4.2. We construct H by

recursion. For XK the collection HF will have the following closure property :

∀f ∈ HF , δ ∈ F K−1(f � δ) ∈ HF (4.9)

Let F be a capturing construction scheme and let K > 1. H1 is the set of all functions of

the form K−neα for every α < ω1 and n < ω.

Suppose Hk has been constructed satisfying (4.9) and (4.3). Let F ∈ Fk and F =
⋃
i<nk

Fi

be the canonical decomposition of F . Then, we let HF be the collection of functions of the

following type:

1. eα, for α ∈ F .

2.
∑

i<nk
ϕi(f) � (Fi \ F0) for every f ∈ HF0 .

3. 1
Kn

(∑
i<nk

ϕi(f) � (Fi \ F0)
)
� δ for every f ∈ HF0 , every δ ∈ F and n = 1, 2 . . .

It is clear that (4.9) and (4.3) holds for Hk+1. This finishes the construction of H.

Define ‖ · ‖K as in (4.4) and let XK be the completion of (c00(ω1), ‖ · ‖K).

We see that XK is as we wanted. We first show that XK has an uncountable K-basic

sequence. Let (eα)α<ω1 be the canonical unit vector basis.

Lemma 4.18. The vectors (eα)α<ω1 form a normalized K-basis of XK . In particular XK is

not separable.

Proof. It is clear that the eα’s are normalized. To see they are a K-basic sequence let n < m <

ω, α1 < . . . < αm < ω1 and (ai)
m
i=1 ∈ Rm. Let F ∈ F such that αi ∈ F for i = 1, . . . ,m. Take

δ = αn+1 and f ∈ HF such that
∑n

i=1 aieαi attains the norm at f , i.e,

f
( n∑
i=1

aieαi

)
=
∥∥∥ n∑
i=1

aieαi

∥∥∥
K

If f is of the form (1) then f � δ = Kg for some g ∈ HF and if f is of the form (2) then

f = g for some g ∈ HF . Thus,∥∥∥∥∥
n∑
i=1

aieαi

∥∥∥∥∥
K

=

∣∣∣∣∣
〈
f,

n∑
i=1

aieαi

〉∣∣∣∣∣ =

∣∣∣∣∣
〈
f � δ,

m∑
i=1

aieαi

〉∣∣∣∣∣
≤ K

∣∣∣∣∣
〈
g,

n∑
i=1

aieαi

〉∣∣∣∣∣ ≤ K
∥∥∥∥∥
m∑
i=1

aieαi

∥∥∥∥∥
K

by the closure property (4.9).



4.4. Proof of Theorem 4.5 77

We proceed by contradiction. Suppose now that (yα)α<ω1 is a K ′-basic sequence with

1 ≤ K ′ < K. Fix K ′ < L < K and let n < ω such that

1

K
+

1

n
<

1

L
(4.10)

Take a normalized sequence (xα)α<ω1 in c00(ω1,Q) such that

‖xα − yα‖K < min
{ 1

4K ′n
,
L−K ′
8(K ′)2n

}
for every α < ω1.

The following lemma plays the same role of Lemma 4.12 in Theorem 4.4

Lemma 4.19. For every α1 < . . . < α2n < ω1∥∥∥∥∥
n∑
i=1

xαi

∥∥∥∥∥
K

≤ L
∥∥∥∥∥

n∑
i=1

xαi −
2n∑

i=n+1

xαi

∥∥∥∥∥
K

Proof. Note first that ‖∑n
i=1 xαi −

∑2n
i=n+1 xαi‖K ≥ 1/2K ′. Indeed, suppose otherwise then

1 = ‖yα1‖K ≤ K ′
∥∥∥∥∥

n∑
i=1

yαi −
2n∑

i=n+1

yαi

∥∥∥∥∥
K

≤ K ′
∥∥∥∥∥

n∑
i=1

xαi −
2n∑

i=n+1

xαi

∥∥∥∥∥
K

+K ′
2n∑
i=1

‖yαi − xαi‖K

< K ′
(

1

2K ′
+

2n

4K ′n

)
= 1

Now ∥∥∥∥∥
n∑
i=1

xαi

∥∥∥∥∥
K

≤
∥∥∥∥∥

n∑
i=1

yαi

∥∥∥∥∥
K

+
n∑
i=1

‖xαi − yαi‖K

≤ K ′
∥∥∥∥∥

n∑
i=1

yαi −
2n∑

i=n+1

yαi

∥∥∥∥∥
K

+
n∑
i=1

‖xαi − yαi‖K

≤ K ′
∥∥∥∥∥

n∑
i=1

xαi −
2n∑

i=n+1

xαi

∥∥∥∥∥
K

+ 2K ′
2n∑
i=1

‖xαi − yαi‖K

≤ K ′
∥∥∥∥∥

n∑
i=1

xαi −
2n∑

i=n+1

xαi

∥∥∥∥∥
K

+ 4K ′n
L−K ′
8(K ′)2n

≤ K ′
∥∥∥∥∥

n∑
i=1

xαi −
2n∑

i=n+1

xαi

∥∥∥∥∥
K

+ (L−K ′)
∥∥∥∥∥

n∑
i=1

xαi −
2n∑

i=n+1

xαi

∥∥∥∥∥
K

which is what we wanted to prove.

We want to use the capturing of F to contradict the lemma above.
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We proceed as before and find Γ ⊂ ω1 uncountable such that

1. If Dα = supp(xα), then the collection (Dα : α ∈ Γ) form a ∆-System with |Dα| = |Dβ| = d

for every α, β ∈ Γ.

2. There is a function z : d → Q such that, if ϕα : d → Dα is the unique order increasing

bijection, then xα = ϕα(z)

Since F is capturing, we can find F ∈ F and some α1 < . . . < α2n < ω1 in Γ such that F

captures (Dαi : 1 ≤ i ≤ 2n). This means that F ∈ Fk for some k < ω (it will have to be such

that nk ≥ 2n), and for F =
⋃
i<nk

Fi is the canonical decomposition of F we have

Dαi+1 ⊂ Fi, i < 2n

ϕi(D1) = Di+1, i < 2n

Let

v =

n∑
i=1

xαi and w =

n∑
i=1

xαi −
2n∑

i=n+1

xαi

We show that ‖v‖K > L‖w‖K . Since the xαi ’s are normalized there is h ∈ HF0 such that

|〈h, xα1〉| = 1. Taking f =
∑

i<nk
ϕi(h) we get |〈f, v〉| = n. Thus ‖v‖K ≥ n.

Take now f ∈ HF .

If f is of the form (1) then, |〈f, w〉| = 0

If f is of the form (2) then, f = (1/K)
∑

i<nk
ϕi(h) � δ for some δ ∈ F and h ∈ HF0 . If

δ ∈ R(F ) then |〈f, w〉| = 0. Suppose δ ∈ Fj \R(F ) and η ∈ F0 is such that ϕj(η) = δ

Suppose j < n then

|〈f, w〉| ≤

∣∣∣∣∣∣ 1

K
〈
∑
i<j

ϕi(h), w〉

∣∣∣∣∣∣+
1

K
|〈h � η, xα1〉|

≤ n− 1

K
+ ‖xα0‖K =

n− 1

K
+ 1 <

n

L
≤ 1

L
‖v‖K

by (4.10).

Suppose now j ≥ n. Then

|〈f, w〉| ≤ 1

K

∣∣∣∣∣∣
∑
i<n−1

〈ϕi(h), xαi〉+ 〈ϕn−1(h), xαn−1〉 −
∑
n≥i<j

〈ϕi(h), xαi〉 − 〈ϕj(h) � δ, xαj 〉

∣∣∣∣∣∣
≤ 1

K
|(n− 1) + 〈h, xα0〉 − (j − n)− 〈h � η, xα0〉

≤ n− 1

K
+
‖xα0‖K + ‖xα0 � η‖K

K
≤ n

K
+ 1 <

n

L
≤ 1

L
‖v‖K

If f is of the form (3) then |〈f, w〉| ≤ 1 ≤ n
K + 1 < n

L ≤ 1
L‖v‖K .
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We conclude that ‖w‖K < 1
L‖v‖K but this contradicts Lemma 4.19 and thus XK is as we

wanted.
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