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by

David Reiss

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Mathematics

University of Toronto

c© Copyright 2017 by David Reiss



Abstract

Global Well-Posedness and Scattering of Besov Data for the Energy-Critical Nonlinear Schrödinger Equation

David Reiss
Doctor of Philosophy

Graduate Department of Mathematics
University of Toronto

2017

We examine the Defocusing Energy-Critical Nonlinear Schrödinger Equation in dimension 3. This equation has

been studied extensively when the initial data is in the critical homogeneous Sobolev space Ḣ1, and a satisfactory

theory is given in the work of Colliander, Keel, Sataffilani, Takaoka and Tao. We extend the analysis of this

equation to include infinite energy data u0 ∈ Ḃ1
2,q (2≤ q≤∞) that can be decomposed as a finite energy component

(a part in Ḣ1) and a small Besov part, with the size of the energy part depending on the size of the Besov part.

If 2 ≤ q < ∞, the solution is shown to scatter. For q = ∞, the solution is shown to be globally well-posed.

Traditionally, the well-posedness theory has been studied in Strichartz spaces, but we use more subtle spaces

to deal with the high frequencies that arise from the Besov data, Xq(I). These spaces are variants of bounded

variation spaces and satisfy a duality that allows us to recover the traditional multilinear estimate along with a

Strichartz variant that allows for extracting smallness by shrinking the time interval.

We also discuss a conjecture that all data u0 ∈ Ḃ1
2,q for 2≤ q < ∞ evolve to a global solution that scatters and

we discuss the next steps to proving this.
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Chapter 1

Introduction

1.1 Basic Theory for the Nonlinear Schrödinger Equation

We consider the Cauchy problem for the defocusing, energy-critical Nonlinear Schrödinger Equation (NLS) in
dimension 3,

(NLS)

i∂tu+4u = |u|4u

ut=0 = u0.
(1.1.1)

Equation (1.1.1) is a Hamiltonian equation with Hamiltonian given by

E(u(t)) :=
∫
(

1
2
|∇u(t,x)|2 + 1

6
|u(t,x)|6)dx.

The energy-critical NLS is where we will focus our attention, but for the moment, let us consider the general
Defocusing Nonlinear Schrödinger Equation with a nonlinearity of degree p in dimension d,i∂tu+4u = |u|p−1u

ut=0 = u0.
(1.1.2)

Equation (1.1.2) is invariant under time translations: if u(t,x) is a solution to Equation (1.1.2) , then so is
u(t+τ) for fixed τ . Noether’s theorem then tells us that the Hamiltonion is conserved. Similarly, Equation (1.1.2)
is space translation invariant which leads to conservation of the momentum P(u) :=

∫
Rd

2Im(ū∇u)dx and phase

rotation invariant
(
u→ eiθ u

)
, which leads to conservation of mass

∫
Rd
|u|2dx. The equation also enjoys a time-

reversal symmetry: if u(t,x) is a solution, then so is u(−t,x). This allows us to extend the time domain of the
solution to Equation (1.1.2) from [0,T ) to (−T,T ). The results in this thesis are presented with positive time
intervals to make the exposition smoother, however all of the results can be extended to negative times.
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CHAPTER 1. INTRODUCTION 2

For reasons discussed below, we usually take the initial data u0 in a homogeneous Sobolev space. We will
define these spaces now.

Definition 1.1.1. (Sobolev Spaces) For s≥ 0, the homogeneous Sobolev space Ḣs is defined as the closure of the

Schwartz functions under the norm

‖ f‖Ḣs
x (R3) = ‖|∇|

s f‖L2
x(R3) .

If u(t,x) is a solution to (1.1.2), then uλ := λ
− 2

p−1 u( t
λ 2 ,

x
λ
) is also a solution to (1.1.2). We use a superscript

here to denote the scaled version of u instead of the usual subscript because we will be making use of subscripts
throughout the document to denote Littlewood-Paley projections (see Equation (1.1.4)). It can be shown that

||uλ ||Ḣs
x (Rd) = λ

− 2
p−1−s+ 3

2 ||u||Ḣs
x (Rd). (1.1.3)

So if s = d
2 −

2
p−1 , the Ḣs

x(Rd) norm is preserved under scaling. In particular, Equation (1.1.1) preserves the
Ḣ1

x (Rd) norm of a solution and this is why we call Eequation (1.1.1) energy-critical.

Definition 1.1.2. For the function f : R3 → C, we define the space Fourier transform of f to be the function

f̂ : R3→ C, f̂ (ξ ) = (F ( f ))(ξ ) :=
∫
R3

e−2πix·ξ f (x)dx.

Throughout this thesis, subscripts denote Littlewood-Paley projections in space onto dyadic frequencies. Let
ϕ(ξ ) be a C∞ function which is 1 on the ball of radius 1 and decreases monotonically to zero outside a ball of
radius 2. Let λ be a dyadic number, i.e.; λ = 2k for some integer k. Then we define

uλ (t,x) := F−1[F (u)(ϕ(
ξ

λ
)−ϕ(

2ξ

λ
))]. (1.1.4)

Throughout this thesis, if a sum that is written with lower bound N ∑
N

, or if a sum is to be taken ’over dyadic

numbers,’ it is to be interpreted in the following way:

∑
N

F(N) :=
∞

∑
k=−∞

F(2k). (1.1.5)

From Littlewood-Paley theory (see [44] for example), we can write

|| f ||Lp
x (Rd) ∼s,d

(
∑
N
|| fN ||2Lp

x (Rd)

) 1
2

(1.1.6)

|| f ||Hs
x (Rd) ∼s,d

(
∑
N

N2s|| fN ||2L2
x(Rd)

) 1
2

, (1.1.7)

where fN denotes the Littlewood-Paley projection of f onto the Nth dyadic frequency and a∼α b means a≤C(α)b

for some constant C(α). We can generalize these spaces by changing `2 to `p for any p ∈ [2,∞].
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Definition 1.1.3. (Besov Spaces) For s ≥ 0 and 1 ≤ p < ∞, 1 ≤ q ≤ ∞, the homogeneous Besov space Ḃs
p,q is

defined as the closure of the Schwartz functions under the norm

‖ f‖Ḃs
p,q

=

(
∑
N

Nqs ‖ fN‖q
Lp

x (R3)

) 1
q

,

where fN is the Littlewood-Paley projection onto the Nth frequency and the sum is over all dyadic numbers N.

Clearly we have the continuous embeddings for 2 < p < q≤ ∞,

Ḣ1 ⊂ Ḃ1
2,p ⊂ Ḃ1

2,q.

By Plancherel’s theorem, we can see that

|| f ||Ḣ1
x
∼

(
∑
N

N2s|| fN ||2L2
x

) 1
2

, (1.1.8)

and so Ḣ1
x = Ḃ1

2,2. For a more detailed analysis of Besov spaces, see [24].

The following definition of solutions to Equation (1.1.1) requires the spaces Xq(I). We postpone the definition
of these spaces to Section 2.1 because they require some technicalities.

Definition 1.1.4. Consider Equation (1.1.1) with u0 ∈ Ḃ1
2,q. A function u : I ×R3 → C on a non-empty time

interval I containing 0 is a solution to (1.1.1) if it belongs to L∞
t Ḃ1

2,q(K×R3)∩Xq(K) for every compact interval

K ⊂ I and obeys the Duhamel formula

u(t) = eit4u0− i
t∫

0

ei(t−s)4(|u|4u)(s)ds (1.1.9)

for all t ∈ I. We refer to the interval I as the lifespan of u. We say that u is a maximal-lifespan solution if the

solution cannot be extended to any strictly larger interval. The solution u is global if I = R.

We denote by Γ the Duhamel mapping

Γ(u) := eit4u0− i
t∫

0

ei(t−s)4(|u|4u)(s)ds, (1.1.10)

and by I , the multilinear mapping

I (u) :=
t∫

0

ei(t−s)4(|u|4u)(s)ds. (1.1.11)

Definition 1.1.5. Let s be the critical Sobolev exponent for (1.1.1). Given a global solution u to Eequation (1.1.2),

we say the solution scatters in Ḃ1
2,q(R3) if there exists unique asymptotic states u± ∈ Ḃ1

2,q(R3) such that
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lim
t→±∞

||u(t)− eit4u±||Ḃ1
2,q(R3) = 0. (1.1.12)

A solution scatters in Ḣ1(R3) if the above definition is satisfied with all instances of Ḃ1
2,q(R3) changed to

Ḣ1(R3).

If the time interval I can be inferred from context (usually in this case I = R), we let ||u||q,r = ||u||Lq
t Lr

x(I×R3).

Equation (1.1.2) has been studied extensively in a variety of settings. We will name a few that are particularly
relevant to this thesis. In [1], Cazenave and Weissler proved local well-posedness results for equation (1.1.2)
in critical Sobolev settings. For the energy-critical equation (equation (1.1.1)) we see a particularly beautiful
evolution of the theory. In [4], Bourgain proved global well-posedness and scattering for (1.1.1) for arbitrary data
assuming radial symmetry. He did this using an induction on energy strategy that he pioneered and which we
outline now. It is known that if u is a solution to (NLS) on the time interval [t0,T ) and ||u||L10

t L10
x ([t0,T )×R3) < ∞

for all T > t0, then u scatters (See [37] for example). For this reason, we say the L10
t L10

x norm is a scattering
norm for the Energy Critical Nonlinear Schrödinger Equation. For every energy E ≥ 0, we define M(E) :=

sup
I=[t0,T ],||u0||Ḣ1≤E

||u||L10
t L10

x ([t0,T )×R3). If M(E) is finite for all E > 0, then u scatters. In [4], Bourgain proves M(E)≤

C(E,η ,M(E−η4)) for η = η(E) which is bounded away from zero. It can be shown that this implies M(E) is
finite for all E > 0 and hence shows scattering (for radial, finite-energy data).

In [15], Colliander, Keel, Staffilani, Takaoka and Tao use the induction on energy framework to make the
important advance of removing the radial assumption and proving global well-posedness and scattering for (1.1.1)
with global bounds. Profile decomposition (see Chapter 5) results were obtained for the L2-critical NLS in [31],
[30], [35] and for the Ḣ1-critical NLS (Equation (1.1.1)) in [36]. These profile decomposition results along with
the rigidity arguments developed by Bourgain, the authors of [15] and Kenig and Merle [33] [34] led to the latter
two authors producing a ”road map” to prove global well-posedness using these tools, which is described by Kenig
in [28]. Steps in the analysis involve local theory, profile decomposition, perturbation theory, and Morawetz-type
estimate, along with boundedness of solutions in the data space. This is sufficient to prove global well-posedness
(and scattering in most cases). These techniques were further developed by Visan [17] [18], Ryckman-Visan [16],
Tao, Killip. There is also an extensive presentation of the technique in Visan’s Oberwolfach notes [10]. This
technique is only possible when solutions remain bounded in the initial data space. For Equation (1.1.2), this
means we are restricted to the L2-critical and Ḣ1-critical equations, since the L2 norm and Ḣ1 norms of solutions
to Equation (1.1.1) are guaranteed to be bounded. However, if we assume solutions are in L∞

t Ḣs for s ∈ (0,1),
then we may try to use this road map to prove well-posedness for the Ḣs-critical NLS. Indeed, this was done for
s = 1

2 by Kenig and Merle in [33]. In [39], Jason Murphy proved global well-posedness and scaterring (with this
boundedness assumption) for s ∈ (0,1). The super-critical regime (s > 1) was also attacked using this approach
by Killip and Visan in [19]. In Chapter 6, devoted to future projects, we give an outline to proving global well-
posedness for any data in the Besov space Ḃ1

2,q assuming the bound ‖u‖L∞
t Ḃ1

2,q(I×R3) for any solution u to (NLS)
on interval I.

In the L2-critical theory, Tao, Visan, Killip and Zhang used similar machinery to prove global well-posedness
and scattering for radial data ( [61] [62]). and Dodson removed the radial data in his groundbreaking work
in [40], [41], [42] and [43].

The Hamiltonian
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E(u(t)) :=
∫
(

1
2
|∇u(t,x)|2− 1

6
|u(t,x)|6)dx

gives rise to the focusing Nonlinear Schrödinger Equation in dimension three,i∂tu+4u =−|u|4u

ut=0 = u0.
(1.1.13)

This equation is more subtle than the defocusing case. In [54], it is shown that

W (x) =
(

1+
1
3
|x|2
)− 1

2

is a stationary solution to Equation (1.1.13) which has infinite scattering norm. In fact, it is conjectured that W is
a minimal counterexample to global spacetime bounds. See [55] for more details.

1.2 Infinite Energy Solutions

Most of the work on Equation (1.1.1) has been in the realm of finite energy solutions. Ie; the initial data consid-
ered has energy E(u0) =

1
2
∫
R3

(
|∇u|2 + 1

6 |u(t,x)|
6
)

dx < ∞. It is easy to see why. Conservation of the Hamiltonian,

along with the positive sign separating the terms gives us that the Ḣ1 norm of a solution to (1.1.1) is bounded.
This is the toe-hold that seems crucial for proving a well-posedness theory. A similar pattern can be seen for the
mass-critical case; very little work has been done on this equation without assuming u0 ∈ L2

x . This is similar in
the theory of the wave equations and other dispersive equations. There are notable exceptions even for (1.1.1).
We will see one such result below. But first, let us state precisely the main theorem in [15].

Theorem 1.2.1. For any u0 with ||u0||Ḣ1 < ∞, there exists a global solution u ∈C0
t (Ḣ

1
x )∩L10

t,x to Equation (1.1.1)

that is unique in C0
t (Ḣ

1
x ) such that

∞∫
−∞

∫
R3

|u(t,x)|10dxdt ≤C(E(u0)) (1.2.1)

for some constant C(E(u0)) that depends only on the energy.

In addition, if u is a solution to the energy-critical Nonlinear Schrödinger Equation, with ||u||L10L10(R×R3) < ∞,
then u scatters in the energy space. Thus, any finite-energy data evolves to a global solution that scatters.

We can then ask the following questions:

1. What is the largest space G of initial data that will guarantee that solutions to Equation (1.1.1) are globally
well-posed?

2. What is the largest space for initial data S that will guarantee that solutions to Equation (1.1.1) scatter?

Theorem 1.2.1 tells us that Ḣ1 ⊂S ⊂ G .
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In [8], Planchon shows that initial data of the form u0(x) =
ε0

|x|
1
2

produces a self-similar solution u(t,x) =

1
√

t
1
2

U( x√
t ) for every positive ε0. This solution converges weakly to the initial data as t→ 0. The initial condition

1

|x|
1
2

is in Ḃ1
2,∞. It is also shown that for general data u0 with ||u0||Ḃ1

2,∞
< ε , solutions evolve globally, thus global

well-posedness holds for a class of infinite-energy solutions. This is also an important example of global well-
posedness for self-similar solutions. However, these self-similar solutions cannot scatter. Thus, if Bq

ε := {u0 :
||u0||Ḃ1

2,q
< ε}, for 2≤ q≤ ∞ then for some ε small enough:

B∞
ε ∪ Ḣ1 ⊂ G and B∞

ε 6⊂S .

In the setting on nonlinear Wave equations, Tao has shown that for a logarithmically supercritical nonlinearity,
one can obtain solutions that are infinite in the critical space. In particular, in three spatial dimensions, for the
scalar field u : I×R3→ R, if we consider the nonlinear wave equation

�u = |u|4u, (1.2.2)

where �u =−∂ttu+4u, we see that (1.2.2) is energy-critical. If we modify the nonlinearity logarithmically
and consider the equation

�u = |u|4u log(2+u2), (1.2.3)

then (1.2.3) is energy super-critical and the following result holds.

Theorem 1.2.2. [63] Let u0, u1 ∈ C∞(R3) be any spherically symmetric smooth initial data. Then there is a

unique global smooth solution to (1.2.3) with initial position u(0,x) = u0(x) and initial velocity ∂tu(0,x) = u1(x).

This result differs from the main result of this thesis (see below) in that the super-criticality of the theorem
comes from the equation as opposed to the initial data, but both theorems show that there is some maneuverability
when it comes to exploring dispersive equations past the critical regime.

1.3 Main Result and Further Conjecture

Our goal is to show that there is a class of data with less regularity than Ḣ1 that scatters and a class of data with
even less regularity that evolves globally. Although we are not able to show that all Besov data evolves globally,
we are able to expand the current set of initial data to include small perturbations (in the Besov space) of Ḣ1 data.
The precise statement of the theorem requires the definition of the spaces Xq(I), see Section 2.1.

Theorem 1.3.1. Let u0 ∈ Ḃ1
2,q with 2 ≤ q ≤ ∞ and u0 = v0 + w0, v0 ∈ Ḣ1 and w0 ∈ Ḃ1

2,q with ||w0||Ḃ1
2,q

<

min
(

1
2 ,ε0

(
||v||L10

t L10
x (R×R3), ||v0||Ḣ1

))
, where v is the unique solution to Equation (1.1.1) emerging from ini-

tial data v0 ∈ Ḣ1. There exists a unique global solution u(t,x) to Equation (1.1.1) which satisfies:

For 2≤ q < ∞,

u ∈C0
t Ḃ1

2,q(R+×R3)∩Xq(R+),
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and u scatters in Ḃ1
2,q. For q = ∞,

u ∈ L∞
t Ḃ1

2,∞(R+×R3)∩X∞(R+)

and u converges weakly to u0 in Ḃ1
2,∞ as t→ 0.

In Lemma 2.1.9, we will show that X2 ⊂ L10L10. Since Ḣ1 = Ḃ1
2,2, Theorem 1.3.1 is at least as strong as

Theorem 1.2.1.

Corollary 1.3.2. Let u0 ∈ Ḣ1. There exists a unique solution u(t,x) to Equation (1.1.1) for all time with u ∈
C0

t Ḣ1(R+×R3)∩Xq(R+). Furthermore, u scatters in Ḣ1.

Theorem 1.3.1 allows us to say for q ∈ [2,∞),

B∞
ε0
+ Ḣ1 ⊂ G ,

Bq
ε0 + Ḣ1 ⊂ S .

In particular, Theorem 4.3.1 generalizes the result of [15] and [8]. A further question is the exact nature of G and
S .

Conjecture 1.3.3. For q ∈ [2,∞),

Ḃ1
2,∞ ⊂ G

Ḃ1
2,q ⊂ S ,

where q ∈ [2,∞). As of this time, we are not able to prove this conjecture, but in Section 6 we outline a
procedure that may produce a partial result.

1.4 The Limitations of Strichartz Spaces and the Introduction of
U p−V p Spaces

To obtain well-posedness, a fixed-point argument has traditionally been used when studying dispersive
equations. Strichartz spaces are perfect for running fixed-point arguments when dealing with data in Ḣs because
of the Strichartz estimates below.

Definition 1.4.1. The space-time Lebesgue space Lq
t Lr

x(I×R3) is called a Strichartz space (for regularity s) if

2≤ q,r ≤ ∞ and (q,r) satisfy the admissibility condition

2
q
+

3
r
=

d
2
− s. (1.4.1)

We call such pairs admissible. If s = 1 we use the terms energy-admissible Strichartz space and we call (q,r) an

energy-admissible pair. If s = 0 we use the terms mass-admissible Strichartz space and mass-admissible pair.
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Strichartz spaces work well with solutions to the linear Schrödinger equation

i∂tu+4u = 0 (1.4.2)

In particular, we have the following Strichartz estimates. The nonendpoint cases were developed
in [51], [52], [48] and [50]. The endpoint cases were proved in [53]. The following is taken from [44].

Lemma 1.4.2. Let u0 ∈ L2 and let (q,r) and (q̃, r̃) be mass-admissible pairs. Then

||eit4u0||Lq
t Lr

x(IxR3) ≤ ||u0||L2
x
, (1.4.3)

||
∫
R

e−is4F(s)ds||L2
x(R3) .q̃,r̃ ||F ||Lq̃′

t Lr̃′
x (R×R3)

, (1.4.4)

||
∫

t ′<t

ei(t−t ′)4F(t ′)dt ′||Lq
t Lr

x(R×R3) .q,r,q̃,r̃ ||F ||Lq̃′
t Lr̃′

x (R×R3)
. (1.4.5)

Using Sobolev embedding, we can tailor these estimates for the energy-critical setting. They are presented in this
form for referencing in later sections as it turns out it is easier to use the L2 estimates directly for our purposes.
These estimates along with the Duhamel formula Equation (1.1.9), Hölder’s inequality and the Sobolev
Embedding Theorem allow one to prove the multilinear estimate

||u||10,10 . ||u0||Ḣ1 + ||u||510,10, (1.4.6)

for solutions u to (NLS), with initial data u0 ∈ Ḣ1. This estimate is the key to the fixed point argument and it is
not hard to show local well-posedness in a Strichartz space using it. However, Lemma 1.4.2 does not generalize
to Besov data and that makes proving mutlilinear estimates similar to those in Equation (1.4.6) impossible (in a
Strichartz space). We would like to find a space-time space X where this is possible. In particular, we would like
to show the following multilinear estimate for solutions to (NLS) with initial data u0 ∈ Ḃ1

2,q:

||u||X(I×R3) . ||u0||Ḃ1
2,q

+ ||u||5X(I×R3)
. (1.4.7)

In Section 2.1, we will properly introduce new spaces that are equipped to handle the frequency refinements that
we need to deal with Besov initial data. These spaces are variants of the bounded variation spaces V p (also
introduced in Section 2.1). They are robust enough for both Strichartz-type estimates and the multilinear
estimates that we require. U p and their dual V p′ spaces were introduced to the theory of dispersive equations by
Hadac, Herr, Koch, Tataru and Tzvetkov in [13], [9], [12], [11], [22].

Remark 1.4.3. There are two properties of Strichartz spaces that we will highlight. Strichartz spaces enjoy a

’fungibility’ property in the following sense. If we know that ||u||LqLp([0,T ]×R3) < ∞, then for every ε > 0, we can

find 0 < T ′ < T such that ||u||LqLp([0,T ′]×R3) < ε. Fungibility is related to absolute continuity in the following

way. For a norm || · ||X(I×R3) and a function u, we define a measure µ f by µ f (I) = ||u||X(I×R3). Then the norm is

said to be fungible if for every u ∈ X(I×R3), µ f is absolutely continuous with respect to the Lebesgue measure.

This property of Strichartz spaces is used implicitly throughout the theory of nonlinear Schrödinger equations

and other dispersive equations where Lebesgue spaces are used in a fixed-point argument. Fungibility seems to

be a bit of a misnomer, but I will use that term as it is embedded in the literature to date. 1

1I am grateful to Rowan Killip for helping me understand the nuances of fungibility.
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The second property is that we have a choice of exponents given in Lemma 1.4.2, equations (1.4.4) and (1.4.5)

(we may choose admissible (q̃′, r̃′)). This is known as Strichartz flexibility, and helps when proving multilinear

estimates like Equation (1.4.6). The spaces that we will be using in our analysis are lacking both of these

properties and therein lies most of the difficulty.

1.5 Summary of Proof

Theorem 1.3.1 is proved with a stability argument. We summarize it now. In Section 2.1, we introduce our
function spaces and give some basic statements about them. In Section 4.2, we prove well-posedness theorems.
In particular, Theorem 4.2.1 shows that Equation (1.1.1) is globally well-posed in Xq, for small initial data in
Ḃ1

2,q for 2≤ q≤ ∞. This implies that w0 evolves to a global solution, w(t,x) which we take as fixed. To prove
this, we rely heavily on the multilinear estimates in Chapter 3. There are two multilinear estimates we will need.
The first, Prop. 3.2.2 gives us the inequality

||u||Xq ≤ ||u0||Ḃ1
2,q

+ ||u||2Xq ||u||3X∞ , (1.5.1)

for solutions u to (NLS), with 2≤ q≤ ∞. This is proved in Chapter 3, by considering the cases q = 2 and q = ∞

separately proved in Prop. 3.1.1 and Prop. 3.1.2 and then interpolating between them to complete the proof of
Prop. 3.2.2. Although the technique to prove this estimate is similar in the q = 2 case and the q = ∞ case, there
are technical subtleties that arise. In particular, there are two duality arguments that are needed, Lemma 2.3.1
and Lemma 2.3.2 which are proved in Section 2.3. The other multilinear estimate we prove is Prop. 3.2.3. The
estimate is

||u||Xq ≤ ||u0||Ḃ1
2,q

+ ||u||4Xq ||u||10,10 (1.5.2)

for solutions u to (NLS) with 2≤ q≤ ∞. The benefit of this second estimate is the ability to extract smallness on
the right-hand side by shrinking the time interval (see Remark 1.4.3). However, this estimate is only useful if
u ∈ L10

t L10
x . Thus, both these estimates are crucial in our analysis. To prove the multilinear estimates Equation

(1.5.4) and Equation (1.5.5) , a bilinear Strichartz estimate, Proposition 2.2.4 is required which is a variant on the
classical bilinear estimate used for Strichartz spaces, developed by Bourgain [3]. The proof of these multilinear
estimates become quite technical, as the spaces that we are working with require a frequency decomposition. In

particular, we must decompose each instance of u and ū in
t∫

0
ei(t−s)4 (|u|4u

)
N (s)ds using Littlewood-Paley

theory and sum over the dyadic projections. The sum is split up into 5 sub-sums according to the relative size of
N compared to the frequency of each instance of u and ū. Each sub-sum requires a different analysis, making the
proof quite involved.

In Theorem 4.2.1, we show that if the initial data is small enough, the data will evolve globally under Equation
1.1.1. In particular, if we let w denote the solution to Equation 1.1.1 with initial data w0 (see Theorem 1.3.1),
then w evolves globally. With solution w fixed, we let e = e(t,x) = |w+ ũ|4(w+ ũ)−|w|4w−|ũ|4ũ. If ũ is a
solution to

( ˜NLS)

i∂t ũ+4ũ = |ũ|4ũ+ e

ũt=0 = v0 ∈ Ḣ1,
(1.5.3)
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then u(t,x) = ũ(t,x)+w(t,x) is a solution to (NLS). Thus, to show that (NLS) is globally well-posed, it suffices
to show that Equation (1.5.3) is globally well-posed. In Section 4.2, we show that Equation (1.5.3) is locally
well-posed. If the maximal time of existence T ∗ is finite, we know that ||u||Xq[0,T ∗) = ∞. We assume this and
seek a contradiction. The contradiction comes from our stability theorem, Theorem 4.2.6 in Section 4.2. Indeed,
if we consider the solution to (NLS) v = v(t,x) emerging from initial data v0, Theorem 4.2.6 tells us that if
||w0||Ḃ1

2,q
is small enough, then

||v− ũ||Xq([0,T ∗)) < ∞. (1.5.4)

From [15], we know that ||v||L10
t L10

x (R+×R3) < ∞. In Section 4.2, Lemma 4.2.2, we show that it is also true that
v = v(t,x) has global bounds in the space Xq,

||v||Xq(R+) < ∞. (1.5.5)

Since ||w||Xq(R+) is bounded, Theorem 4.2.1, Equation (1.5.4) and Equation (1.5.5) imply ||u||Xq([0,T ∗)) < ∞,
which gives us our desired contradiction. Theorem 4.2.6 is essentially the statement that initial data will evolve
under (NLS) and a perturbation of (NLS) in a way that keeps the two solutions close when measured in the Xq

norm.

To prove the Stability Theorem 4.2.6 for small times, a continuity argument is used by employing the multilinear
estimates in Chapter 3. To extend this to large times, an induction argument is used. This technique of using
perturbations to expand the domain of data that is well-posed dates back to Bourgain’s work in [5]. In [59],
Germain uses this strategy on the semilinear wave equation to obtain global well-posedness using variants of
Lorentz-Besov spaces.

For q < ∞, if lim
t→∞
||

∞∫
t

e−is4 (|u|4u
)
(s)ds||Ḃ1

2,q
= 0, this suffices to show scattering, as done in Section 4.4. This

usually straightforward argument is made complicated by the fact that the Xq spaces are not ”fungible” (See
Remark 1.4.3). This difficulty is overcome by using another multilinear lemma, Lemma 4.4.1.

1.6 Physical Motivation

The Nonlinear Schrödinger Equation (1.1.2) describes a broad array of phenomena, depending on the dimension
d and the power of the nonlinearity p. It models propagation of light in nonlinear optical fibers and is an
important model in the theory of Bose-Einstein condensates [57], [58]. The Nonlinear Schrödinger Equation
arises naturally as the description for envelope dynamics of a quasi-monochromatic plane wave propagating in a
weakly nonlinear dispersive medium when dissipative processes are negligible. Sulem and Sulem’s work in [56]
gives a detailed analysis of this, which we describe now in summary.

We consider a scalar nonlinear wave equation

L(∂t ,∇)u+G(u) = 0,

with dispersion relation L(−iω, ik) = 0, where ω is the frequency and k is the wave vector. This equation admits
approximate monochromatic wave solutions u = εψei(k·x−ωt), with constant, small amplitude εψ . If we consider
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a nonlinear medium responding adiabatically to a finite wave amplitude, the nonlinearity affects the dispersion
relation and the frequency ω = ω(k) must be replaced by Ω = Ω(k,ε2|ψ|2). Furthermore, we must replace our
space and time variables with the slow variables X = εx and T = εt, the derivatives being replaced by ∂t + ε∂T

and ∂X + ε∇, where ∇ is now the slow spatial variable gradient. This leads to the weakly nonlinear dispersion
relation

[
ω + iε∂T −Ω(k− iε∇,ε2|ψ|2)

]
ψ = 0.

Expanding to second order in the small variable ε leads to

i(∂T +vg ·∇)ψ + ε
{

∇ · (D∇ψ)+ γ|ψ|2ψ
}
= 0, (1.6.1)

where vg = ∇kω is the group velocity and D =
(

1
2

∂ω

∂k j∂k`

)
, with j, `= 1, · · · ,d defined as half the Hessian matrix

of the frequency, both evaluated at the wave vector k. γ = ∂Ω

∂(|ψ|2)
, evaluated at |ψ|2 = 0 and wave vector k.

If we view Equation (1.6.1) as an initial value problem in time and rewrite the equation in moving reference
frame, we get the Nonlinear Schrödinger Equation

i
∂ψ

∂τ
+∇ · (D∇ψ)+ γ|ψ|2ψ = 0,

where the derivatives are taken with respect to the variable of the moving reference frame.

As the above discussion elucidates, there is certainly ample physical motivation for analyzing the Nonlinear
Schrödinger Equation, however it should be noted that there is a further reason for considering the Energy
Critical Nonlinear Schrödinger Equation (NLS). The subtleties of the equation are brought to the forefront when
studying dispersive equations at the critical scaling. In particular, the general Nonlinear Schrödinger Equation is
locally well-posed if the initial data u0 is taken in Sobolev space Ḣs with s≥ sc and 0≤ sc ≤ 1, where sc is the
critical scaling (see Section 1.1). See [2] for a systematic study of the well-posedness theory for the Nonlinear
Schrödinger Equation in the subcritical and critical regimes. In the supercritical regime s < sc, Equation (1.1.2)
is ill-posed [60].

1.7 Future Directions

We discuss three directions to take further research.

i) Is it possible to prove an analogous result in the L2 setting? In particular, in the L2-critical setting, can we
expand the class of initial data that evolves to global solutions from L2 to L2 + Ḃ0

2,q for 2≤ q≤ ∞ and can we
expand the class of initial data that evolves to scattering solutions from L2 to L2 + Ḃ0

2,q for 2≤ q < ∞?

More generally, we may ask the question: If we have a sufficiently robust well-posedness theory and we assume
the bound ||u||L∞

t Ḣs < ∞ (which may come naturally from the equation or may be taken as a hypothesis), can we
apply the techniques of this document and extend the space of initial data that scatter to include Besov data? In
other words, for what regularity and dimension can we use this technique to prove global well-posedness and
scattering for Besov data?

ii) Theorem 4.3.1 requires that the size of the ”Besov part” w0 is bounded as a function of the ”energy part” v0.
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In [59], in the context of the semilinear wave equation, Germain removes this boundedness restriction for certain
initial data. For the sake of completeness, we state this result now.

Theorem 1.7.1. [59] Let d = 6. There exists ε > 0 such that the Cauchy problem (NLW) has a global solution u

provided the initial data (u0,u1) can be written

u0(x) = v0(x)+
c0

|x|2
and u1(x) = v1(x)+

c1

|x|3
,

with (v0,v1) ∈ Ḣ1×L2, c1 < ε and c2 < ε . Furthermore, u is unique in the set E = {u,dX (u,S )< ε1} where

ε1 > 0.

(NLW) refers to the Nonlinear Wave Equation

(NLW )


�u+ |u|u = 0

ut=0 = u0

∂tut=0 = u1.

(1.7.1)

We can ask whether this Theorem has an analogous counterpart in the setting of the Nonlinear Schrödinger
equation.

iii) Finally, a useful step towards proving Conjecture 1.3.3 is to assume that solutions are bounded in time in Ḃ1
2,q

for 2≤ q≤∞ and to prove the conjecture in that setting. We state this more precisely as the following conjecture:

Conjecture 1.7.2. Assume solutions to Equation (1.1.1) with data u0 ∈ Ḃ1
2,q, q≤ ∞ evolve with the condition

u ∈ L∞
t Ḃ1

2,q. Let u0 ∈ Ḃ1
2,q , q < ∞. There exists a unique solution u(t,x) to Equation (1.1.1) for all time with

u ∈ L∞
t Ḃ1

2,q([0,∞)×R3)∩Xq([0,∞)). If q < ∞, then u also scatters.

One way to prove this conjecture might be to follow the aaaaap outlined by Kenig and Merle (see Chapter 1.1).
The multilinear estimates from Chapter 3, the stability theory developed in Chapter 4 and the profile
decomposition result in Chapter 5 are some of the components necessary for the road map. We discuss how we
can apply the theory from the road map to prove Conjecture 1.7.2 in Chapter 6.



Chapter 2

Linear Estimates

2.1 Function Spaces

Here we define the function spaces U p, V p as well as some variants that will be use in establishing our
well-posedness theory. The general theory of U p, V p spaces was developed by Hadac, Herr, Koch, Tataru and
Tzvetkov in [13], [9], [12], [11], [22]. The following results are adapted from [9]. We limit our introduction to
L2-based spaces, since these are all we require in our analysis, but we can replace L2 by any Banach space and
still allow for a consistent theory. Some basic proofs in this section are omitted as they can be found in the
original works mentioned above and require an amount of technical detail that is unnecessary in this presentation.

For interval I, we let Z be the set of finite partitions {ti}n
i=1. If the interval I = (α,β ), with −∞≤ α and β ≤ ∞

is open, we define the set of partitions by the requirement α < t0 < .. . < tn < β . If the interval is half open or
closed, a similar definition applies with the partition including the endpoints that are contained in the interval.

Definition 2.1.1. Let I be an interval, 1≤ p < ∞ and v : I→ L2. We define

||v||V p(I) = max

||v||L∞
t L2

x(I×R3), sup
τ∈Z

(
n−1

∑
i=1
||v(ti+1)− v(ti)||pL2

x

) 1
p
 , (2.1.1)

and the space V p =V p(I) to be the space of functions v for which this norm is finite. We omit I where it is

implied by the context.

We define V P
RC to be the closed subspace of V p consisting of right-continuous functions.

V p is a Banach space. It is the dual space to the space U p′ which we define now. Here, (p, p′) are Hölder duals
1
p +

1
p′ = 1.

Definition 2.1.2. A p-atom is a right continuous step function,

a(t) =
n

∑
i=1

φiχ[ti, ti+1)(t), (2.1.2)

13
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where {ti}n
i=1 ∈Z , tn+1 = β , {φi}n

i=1 are L2 functions such that
n
∑

i=1
||φi||pL2

x
≤ 1, and with the condition that the

function a(t) must be zero in a neighbourhood of the endpoint α .

We define the atomic space U p(I) as the space consisting of functions u =
∞

∑
j=1

λ ja j, where {a j}∞
j=1 is a sequence

of p-atoms and {λ j}∞
j=1 a summable sequence of complex numbers,

∞

∑
j=1
|λ j|. We define the associated norm by

||u||U p(I) := in f

(
∞

∑
j=1
|λ j| such that u =

∞

∑
j=1

λ ja j, λ j ∈ C and a j are p-atoms

)
. (2.1.3)

Lemma 2.1.3. [9] Let 2≤ p < q < ∞. Then the following continuous embeddings hold:

U p ⊂ V p
RC ⊂V p (2.1.4)

V p
RC ⊂ Uq. (2.1.5)

Let 1 < p < ∞ and p′ be Hölder duals ( 1
p +

1
p′ = 1). Then V p′ is the dual space of U p in the sense that there

exists a bilinear form

B : U p×V p′ : (u,v)→ B(u,v) (2.1.6)

such that the mapping

V p′ 3 v→ (u→ B(u,v)) ∈ (U p)∗ (2.1.7)

is a surjective isometry.

The following proposition gives an integral representation of our bilinear form. This will be useful for proving
the duality statements we will need for our multilinear estimates.

Proposition 2.1.4. Let u ∈V 1 be absolutely continuous on compact intervals with lim
t→∞

u(t) = 0 and v ∈V p, then

B(u,v) =−
∞∫
−∞

〈u′(t),v(t)〉dt. (2.1.8)

Definition 2.1.5. For 2≤ p≤ ∞ we let U p
4L2 (resp. V p

4L2) be the spaces of all functions u : R→ L2 such that

t→ e−it4u(t) is in U p (resp. V p), with norms

||u||U p
4

= ||e−it4u||U p

||u||V p
4

= ||e−it4u||V p .
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Remark 2.1.6. The space U p
4 is an atomic space with atoms a =

n
∑

i=1
χ[ti,ti+1)e

it4φi.

For 1≤ p≤ ∞, the V p
4 norm is preserved under the linear evolution of data in L2. In particular, it is easy to show

that

||eit4u0||V p
4
= ||u0||V 2 = ||u0||L2

x
. (2.1.9)

For a solution u to to (1.1.1), the V p
4 norm is a measure of how far the solution is from the corresponding linear

evolution. Similar constructions of spaces go back to [6], where the author introduces X s,b spaces. We skip the
definition of X s,b space and define the homogeneous Besov refinement of such spaces, Ẋ s,b,q by the norm

||u||Ẋs,b,q =

(
∑
N

Nsq||(1+ |τ|2)
b
2 Ft,x(u)||qL2

t L2
x

) 1
q

, (2.1.10)

where Ft,x is the space-time Fourier transform. If we define X s,b,q
4 by

||u||
Xs,b,q
4

= ||e−it4u||Xs,b,q , (2.1.11)

then we have the continuous embeddings ( [9]):

Ẋ
0, 1

2 ,1
4 ⊂U2

4 ⊂V 2
4,RC ⊂ Ẋ

0, 1
2 ,∞

4 . (2.1.12)

See [7] for a survey on X s,b spaces. X s,b spaces and their variants work well in subcritical settings, but for critical
settings, U p

4 and V p
4 are successful replacements. Since our data is in Besov spaces, we introduce the following

refinement:

Definition 2.1.7. For 2≤ q≤ ∞, let Xq(I) be the space of functions u : I×R3→ C such that for every dyadic N,

e−it4uN ∈V 2
RC, equipped with the norm

||u||Xq(I) =

(
∑
N

Nq ‖uN‖q
V 2
4(I)

) 1
q

,

for 2≤ q < ∞ and with the norm

||u||X∞(I) = sup
N

(
N ‖uN‖V 2

4(I)

)
,

for q = ∞. This is the space where we will develop our well-posedness theory for data u0 ∈ Ḃ1
2,q.

Lemma 2.1.8. For 2≤ q < p≤ ∞ and I ⊂ R, we have the following continuous embeddings:

Xq ⊂ X p ⊂ L∞
t Ḃ1

2,p. (2.1.13)

Proof. The first embedding just follows from `q ⊂ `p.

We now prove the second embedding. Interchanging the sum and supremum, we have
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‖u‖L∞
t Ḃ1

2,p
= esssup

t

(∑
N

N p ‖uN‖p
L2

x

) 1
p


≤

(
∑
N

N p esssup
t
‖uN‖p

L2
x

) 1
p

.

Since eit4 is unitary, by Definition 2.1.1 and Definition 2.1.5, esssup
t
‖uN‖L2

x
=
∥∥e−it4uN

∥∥
L∞

t L2
x
≤ ||uN ||V 2

4
. Thus,

by Definition 2.1.7, we have

‖u‖Lp
t Ḃ1

2,∞
≤

(
∑
N

N p ‖uN‖p
V 2
4

) 1
p

= ||u||X p . (2.1.14)

Lemma 2.1.9. We have the following continuous embedding:

X2 ⊂ L10
t L10

x . (2.1.15)

Proof. By the Littlewood-Paley inequality (see [44]) and rewriting the space-time Lebesgue integral, we have

‖u‖10,10 ∼

∥∥∥∥∥∥
(

∑
N
|uN |2

) 1
2
∥∥∥∥∥∥

10,10

=

 ∫
I×R3

(
∑
N
|uN |2

)5

dtdx

 1
10

,

where the sum is over all dyadic numbers N. Expanding the fifth power of the sum, we have(
∑
N
|uN |2

)5

= ∑
i
|ui1 |2 · · · |ui5 |2, where uik = uM for some M and ∑

i
is a sum over i1, i2, i3, i4, i5. Then by switching

the sum and the integral, and using Hölder’s inequality, we see

‖u‖10,10 ∼

 ∫
R×R3

∑
i
|ui1 |

2 · · · |ui5 |
2dtdx

 1
10

=

∑
i

∫
R×R3

|ui1 |
2 · · · |ui5 |

2dtdx

 1
10

≤

(
∑

i
‖ui1‖

2
10,10 · · ·

∥∥ui5

∥∥2
10,10

) 1
10
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Now since
(

∑
N
|uN |2

)5

= ∑
i
|ui1 |2 · · · |ui5 |2, we have

(
∑
N
‖uN‖2

10,10

)5

= ∑
i
‖ui1‖

2
10,10 · · ·

∥∥ui5

∥∥2
10,10, and so

‖u‖10,10 .

(∑
N
‖uN‖2

10,10

)5
 1

10

=

(
∑
N
‖uN‖2

10,10

) 1
2

.

Then by Proposition 2.2.2 (see below) and Lemma 2.1.3, we have

‖u‖10,10 .

(
∑
N

N2 ‖uN‖2
U10
4

) 1
2

.

(
∑
N

N2 ‖uN‖2
V 2
4

) 1
2

= ‖u‖X2 .

Definition 2.1.10. We define the space Y q(I) as the space of functions u : I×R3→ C, equipped with the norm

||u||Y q(I) =

(
∑
N

N−q||uN ||qV 2
4

) 1
q

, where the sum is taken over all dyadic numbers N.

This space will only be used in the duality estimate Lemma 2.3.2. If the interval I is clear from context, we may
omit it and write ||u||Y q .

2.2 Strichartz Estimates

This subsection is devoted to generalized Strichartz estimates for the adapted function spaces introduced in
Section 2.1. The following lemma is a direct consequence of the definition of our function spaces Xq, Definition
2.1.7.

Lemma 2.2.1. For 2≤ q≤ ∞, we have the isometry

||eit4u0||Xq(I) = ||u0||Ḃ1
2,q
. (2.2.1)

Proof. By Definition 2.1.5 and Definition 2.1.7,
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||eit4u0||Xq(I) =

(
∑
N

Nq||eit4(u0)N ||qV 2
4

) 1
q

=

∑
N

Nq max

||e−it4eit4(u0)N ||qL∞
t L2

x
, sup
{ti}ni=1∈Z

(
n

∑
i=1
||eiti+14e−iti+14(u0)N− eiti4e−iti4(u0)N ||2L2

x

) q
2



1
q

.

Since ||eiti+14e−iti+14(u0)N− eiti4e−iti4(u0)N ||L2
x
= 0 and ||e−it4eit4(u0)N ||L∞

t L2
x
= ||(u0)N ||L2

x
, we have

||eit4u0||Xq(I) =

(
∑
N

Nq ‖(u0)N‖q
L2

x

) 1
q

= ||u0||Ḃ1
2,q
.

The linear propagator is an isometric mapping from Ḃ1
2,q to Xq. This is in stark contrast to the behaviour of the

mapping from Sobolev spaces to Strichartz spaces, which allows for smallness by shrinking the time interval.
See Remark 1.4.3.

The next proposition relates the space-time Lebesgue norm to the U p
4 norm, while keeping track of scaling.

Using the Littlewood-Paley projection uλ given in Equation (1.1.4), we have:

Proposition 2.2.2. Let 3
2 −

2
q −

3
r > 0 and I ⊂ R. The inequality

||uλ ||q,r ≤ λ
3
2−

2
q−

3
r ||uλ ||Uq

4
(2.2.2)

holds.

Proof. Due to the atomic structure of the spaces U p
4, it suffices to show Equation (2.2.2) for atoms. ie; we let

uλ (t,x) =
n
∑

i=1
χ[ti,ti+1)(t)e

it4φi, with
n
∑

i=1
||φi||qL2

x
= 1 and {ti}n

i=1 ∈Z . It is clear from Definition 2.1.5 that

||uλ ||Uq
4
= 1. Thus, it will suffice to show that ||uλ ||q,r ≤ λ

3
2−

2
q−

3
r .

By splitting up the time integration, we see

||uλ ||
q
Lq

t Lr
x(I×R3)

=
∫
R

||uλ ||
q
Lr

x(R3)
(t)dt

=
n

∑
i=1

ti+1∫
ti

||uλ ||
q
Lr

x(R3)
(t)dt

=
n

∑
i=1

ti+1∫
ti

||eit4
φi||qLr

x(R3)
(t)dt.
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Let r̃ be such that (q, r̃) is an L2−admissible pair, ie; 2
q +

3
r̃ = 3

2 . Since 3
2 −

2
q −

3
r > 0, r > r̃, we can use the

Sobolev embedding theorem Ẇ k,r̃ ⊂ Lr, where, because q, r̃ are an admissible pair, we can express k as
k = 3

2 −
2
q −

3
r . Since φ is localized in frequency to λ , the Sobolev Embedding Theorem tells us that

||eit4φi||Lr
x(R3) ≤ λ

3
2−

2
q−

3
r ≤ ||eit4φi||Lr̃

x(R3). Then by Lemma 1.4.2,

||uλ ||
q
Lq

t Lr
x(I×R3)

≤
n

∑
i=1

ti+1∫
ti

λ
3q
2 −

2q
q −

3q
r ||eit4

φi||qLr̃
x(R3)

(t)dt

=
n

∑
i=1

λ
3q
2 −2− 3q

r ||eit4
φi||qLq

t Lr̃
x(Ii×R3)

≤ λ
3q
2 −2− 3q

r

n

∑
i=1
||φi||qL2

x(R3

≤ λ
3q
2 −2− 3q

r .

Taking the qth root of both sides, we have our desired result.

To prove the multilinear estimates in Chapter 3, we require a bilinear Strichartz estimate for Strichartz spaces.
Multilinear refinements of this kind were first proved by Bourgain in [3] and used extensively in the literature
thereafter, for example in [15]. The following can be found in [10]. Lemma 2.2.3 below is a version of the
bilinear Strichartz estimate that we will use to prove Proposition 2.2.4, which is a refinement adapted to our
function spaces.

Lemma 2.2.3. (Bilinear Strichartz Estimate in Strichartz Spaces) Let M ≤ N be dyadic frequency scales. Then

||eit4 fNeit4gM||L2
t L2

x(R×R3) .MN−
1
2 || f ||L2

x(R3)||g||L2
x(R3). (2.2.3)

Similar to [12], we have the following Bilinear Strichartz estimate which is the analogous result to the previous
lemma, but refined for V 2

4.

Proposition 2.2.4. (Refined Bilinear Strichartz Estimate) Let I ⊂ R, β ≤ λ be dyadic frequency scales,

uλ ,vβ ∈V 2
4, then we have the bilinear estimate,

||uλ vβ ||L2
t L2

x(I×R3) ≤ βλ
− 1

2 ||uλ ||V 2
4
||vβ ||V 2

4
. (2.2.4)

Proof. We in fact prove something slightly stronger. We will show

||uλ vβ ||L2
t L2

x(I×R3) ≤ λ
− 1

2 β ||uλ ||U4
4
||vβ ||U4

4
. (2.2.5)

This, together with the continuous embedding V 2
4 ↪→U4

4 will give us (2.2.4).
Similar to the proof of Lemma 1.4.2, we use the atomic structure of U4

4 and it will suffice to show Equation

(2.2.5) for uλ (t,x) =
n
∑

i=1
χ[ti,ti+1)(t)e

it4φi, with
n
∑

i=1
||φi||4L2

x
= 1 and vβ (t,x) =

m
∑
j=1

ψ[t j ,t j+1)(t)e
it4ψ j, with

m
∑
j=1
||ψ j||4L2

x
= 1. I.e. we must show
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||uλ vβ ||L2
t L2

x(I×R3) ≤ λ
− 1

2 β . (2.2.6)

Without loss of generality, we can assume the atoms have the same partition {ti} ∈Z .

||uλ vβ ||22,2 =
∫
R

||uλ vβ ||2L2
x
(t)dt

=
∫
R

||
n

∑
i=1

χ[ti,ti+1)(t)e
it4

φi

n

∑
i=1

χ[ti,ti+1)(t)e
it4

ψi||2L2
x
(t)dt.

The cross terms have disconnected support in time and we continue,

≤
∫
R

||
n

∑
i=1

χ[ti,ti+1)(t)e
it4

φieit4
ψi||2L2

x
(t)dt

=
n

∑
i=1

ti∫
ti−1

||eit4
φi−1eit4

ψi−1||2L2
x
(t)dt

=
n

∑
i=1
||eit4

φi−1eit4
ψi−1||2L2

t L2
x([ti−1,ti)×R3)

.

We may assume φi and ψi have the same frequency support as uλ and vβ . Then by Lemma 2.2.3 and
Cauchy-Schwarz,

≤
n

∑
i=1

(λβ
− 1

2 )2||φi−1||2L2
x
||ψi−1||2L2

x

≤ (λβ
− 1

2 )2(
n

∑
i=1
||φi−1||4L2

x
)

1
2 (

n

∑
i=1
||ψi−1||4L2

x
)

1
2

≤ (λβ
− 1

2 )2.

Thus,

||uλ vβ ||L2
t L2

x(I×R3) ≤ λ
− 1

2 β ||uλ ||U4
4
||vβ ||U4

4
,

and the proposition follows.

We can use Proposition 2.2.2 to show that X2 embeds continuously into the Lebesgue space L10
t L10

x .

2.3 Duality Lemmas

The following duality arguments will be crucial for our multilinear estimates. They allow us the same
maneuverability as the Strichartz estimates in Lemma 1.4.2 do when trying to prove well-posedness for finite
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energy data.

Lemma 2.3.1. ||
t∫

t0
ei(t−t ′)4F(u)dt ′||U2

4
= sup
||v||V 2

4
=1
|

∫
(t,x)∈R×R3

F(u)vdtdx|.

Proof. By Theorem 2.2.4, Equation (2.1.6) and The Fundamental Theorem of Calculus,

||
t∫

t0

ei(t−t ′)4F(u)dt ′||U2
4

= ||
t∫

t0

e−it ′4F(u)dt ′||U2

= sup
||v||V 2=1

|B(
t∫

t0

e−it ′4F(u)dt ′,v)|

= sup
||v||V 2=1

|
∞∫
−∞

∫
R3

 d
dt

t∫
t0

e−it ′4F(u)dt ′

 v̄dxdt|

= sup
||v||V 2=1

|
∞∫
−∞

∫
R3

e−it4F(u)v̄dxdt|

= sup
||v||V 2

4
=1
|

∞∫
−∞

∫
R3

F(u)v̄dxdt|,

where the last line follows from definition.

Lemma 2.3.1 will suffice to prove the multilinear estimate we require for q = ∞. For q < ∞, we require another
duality lemma. The proof below is adapted from the proof of Prop. 2.11 in [13]. Refer to Definition 2.1.10 for
the definition of Y 2.

Lemma 2.3.2. ||I u||X2 = sup
||v||Y 2=1

|
∫
(|u|4uv)dtdx|

Proof. For ease of reading, we let f (s) =
(
|u|4u

)
(s). So we are trying to prove

||I (u)||X2 = sup
||v||Y 2=1

|
∫

f (t,x)v(t,x)dtdx|. (2.3.1)

By Definition 2.1.7, the duality of `2 and Lemma 2.1.3,

||I (u)||X2 =

∑
N

N||
∫

s<t

ei(t−s)4( f (s))Nds||V 2
4


= sup

||b||
`2=1

∑
N

bNN||
∫

s<t

ei(t−s)4( f (s))Nds||V 2
4

≤ sup
||b||

`2=1
∑
N

bNN||
∫

s<t

ei(t−s)4( f (s))Nds||U2
4
.

Note that {bN} denotes an arbitrary `2 sequence with norm 1. In particular, the subscript does not represent a
Littlewood-Paley projection. By Lemma 2.3.1 and Plancherel’s theorem,
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||I (u)||X2 = sup
||b||

`2=1
∑
N

bNN

 sup
||vN ||V 2

4
=1
|

∞∫
−∞

∫
R3

f (t,x)(v(t,x))Ndxdt|

 .
Note that for each N, we must take the supremum over unit sized functions in V 2

4. We denote this with a
superscript N so that it is not mistaken for a Littlewood-Paley projection. Define ṽb(t,x) = ∑

N
bNNvN

N(t,x). Then

||I (u)||X2 ≤ sup
||b||

`2=1

 sup
||v||V 2

4
=1
|

∞∫
−∞

∫
R3

f (t,x)ṽb(t,x)dxdt|

 . (2.3.2)

Our Lemma then follows by showing ṽb does indeed have Y 2 norm equal to 1 (although we will not argue for
why this is the most general form of a function with Y 2 norm equal to 1). Indeed,

||ṽb||Y 2 =

(
∑
N

N−1||(ṽb)N ||V 2
4

) 1
q

=

(
∑
N

N−1||

(
∑
M

bMMvM
M(t,x)

)
N

||V 2
4

) 1
q

.

Because we are taking the Nth Littlewood-Paley projection, the sum collapses to just the Nth term.

||ṽb||Y 2 =

(
∑
N

N−1||bNNvN
N ||V 2

4

) 1
q

≤ sup
N
||vN

N ||V 2
4

(
∑
N

bN

) 1
q

≤ sup
N
||vN

N ||V 2
4
.

For every ε , there exists a N̄ such that

sup
N
||vN

N ||V 2
4
≤ ||vN̄

N̄ ||V 2
4
+ ε ≤ sup

M
||vN̄

M||V 2
4
+ ε.

Since || fN ||V 2
4
≤ || f ||V 2

4
,

sup
N
||vN

N ||V 2
4
≤ ||vN̄ ||V 2

4
+ ε ≤ 1+ ε,

and we can conclude ||ṽb||Y 2 ≤ 1.



Chapter 3

Multilinear Estimates

In this chapter we prove two multilinear estimates that will be fundamental in Section 4.2: Prop. 3.2.2 and Prop.
3.2.3, which are both given in Section 3.2. These estimates allow us to use fixed point arguments to obtain a
local solution. For ease of reading, Prop. 3.2.2 will be split up in the following way. Prop. 3.1.1 focuses on the
q = ∞ case, Prop. 3.1.2 focuses on the q = 2 case and Lemma 3.2.1 allows us to interpolate between the those
cases to obtain the result in the cases 2 < q < ∞. These are presented and proven in Section 3.1.

3.1 Multilinear Estimates in X∞ and X2

Proposition 3.1.1. Let u ∈ X∞(I) for the time interval I = [t0, t1). Then

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X∞(I) . ||u||5X∞(I). (3.1.1)

Proposition 3.1.2. Let u ∈ X2(I) for the time interval I = [t0, t1). Then

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X2(I) . ||u||

3
X∞(I)||u||

2
X2(I). (3.1.2)

We now prove Prop. 3.1.1.

Proof. We suppress the interval I in what follows for ease of reading. Recall subscripts N refer to the
Littlewood-Paley projection onto the dyadic frequency N. Using the Duhamel representation of the solution
(Equation (1.1.9)), the triangle inequality and Lemma 2.3.1,

23
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||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X∞ = sup

N
N||

t∫
t0

ei(t−s)4((|u|4u)N)(s)ds||V 2
4

≤ sup
N

N||
t∫

t0

ei(t−s)4((|u|4u)N)(s)ds||U2
4

= sup
N


∣∣∣∣∣∣∣ sup
||v||V 2

4
=1

N
∫

I×R3

(|u|4u)Nvdxdt

∣∣∣∣∣∣∣
 .

We may use Plancherel’s theorem to transfer the Littlewood-Paley projection onto the solitary v term. Therefore,

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X∞ ≤ sup

N

 sup
||v||V 2

4
=1

N

∣∣∣∣∣∣
∫

I×R3

(|u|4u)vNdxdt

∣∣∣∣∣∣
 . (3.1.3)

We use Plancherel’s Theorem and decompose each factor of the nonlinearity into their Littlewood-Paley
frequency projections and sum over all dyadic numbers for each factor. We then use Plancherel’s Theorem once
more to obtain

N
∣∣∣∣∫ (|u|4u)vNdxdt

∣∣∣∣ = N
∣∣∣∣∫ (û∗ ˆ̄u∗ û∗ ˆ̄u∗ û)v̂Ndξ dt

∣∣∣∣ (3.1.4)

= N

∣∣∣∣∣
∫
((û∑

λ1

χλ1)∗ ( ˆ̄u∑
λ2

χλ2)∗ (û∑
λ3

χλ3)∗ ( ˆ̄u∑
λ4

χλ4)∗ (û∑
λ5

χλ5
))v̂Ndξ dt

∣∣∣∣∣
= N

∣∣∣∣∣ ∑
λ1,...,λ5

∫
(ûχλ1 ∗ ˆ̄uχλ2 ∗ ûχλ3 ∗ ˆ̄uχλ4 ∗ ûχλ5

)v̂Ndξ dt

∣∣∣∣∣
= N

∣∣∣∣∣ ∑
λ1,...,λ5

∫
u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5

vNdxdt

∣∣∣∣∣ ,

where ∑ χλi is a dyadic partition of unity. ∑
λ1,...,λ5

is a sum ranging over all dyadic numbers λi. ui,λi := (ui)λi is the

Littlewood-Paley projection onto the λ th
i frequency, where for convenience we write ui for either u or ū (this

convenience becomes clear shortly). Due to symmetry, we may also assume λ1 ≤ λ2 ≤ ...≤ λ5. We will break
the sum into cases based on the position of N with respect to all λi. Note that in each case, the largest two
frequencies must be comparable or the support of the integral will be null. For example, if we assume
N < λ1 < .. . < λ5, then by Plancherel,
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∫
u1 · · ·u5vNdxdt =

∫
û1 · · ·u4û5dξ dt

=
∫

((((v̂N ∗ û1)∗ û2)∗ û3) û4) û5dξ dt

=
∫ (∫ (∫ (∫ (∫

v̂N(ξ −µ−η−β −α)û1(α)dα

)
û2(β )dβ

)
û3(η)dη

)
û4(µ)dµ

)
û5(ξ )dξ dt.

This integral is null unless

1
2

λ5 ≤ |ξ | ≤ 2λ5,
1
2

λ4 ≤ |µ| ≤ 2λ4,
1
2

λ3 ≤ |η | ≤ 2λ3,
1
2

λ2 ≤ |β | ≤ 2λ2,
1
2

λ1 ≤ |α| ≤ 2λ1,

|ξ −η−β −α| ≤ 2λ1,

which implies λ5 ≤ 20λ4.

We decompose the sum on the right-hand side of (3.1.4) into five terms as follows:

∑
λ1,...,λ5

∫
u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5

vNdxdt . ∑
1

∫
u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5

vNdxdt

+ . . .+

∑
5

∫
u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5

vNdxdt,

where

(Master Sum) ∑
1

= ∑
N<λ1<∞

∑
λ1<λ2<∞

∑
λ2<λ3<∞

∑
λ3<λ4∼λ5<∞

(3.1.5)

∑
2

= ∑
−∞<λ1<N

∑
N<λ2<∞

∑
λ2<λ3<∞

∑
λ3<λ4∼λ5<∞

∑
3

= ∑
−∞<λ2<N

∑
N<λ3<∞

∑
λ3<λ4∼λ5<∞

∑
−∞<λ1<λ2

∑
4

= ∑
−∞<λ3<N

∑
N<λ4∼λ5<∞

∑
−∞<λ2<λ3

∑
−∞<λ1<λ2

∑
5

= ∑
−∞<λ4<N∼λ5

∑
−∞<λ3<λ4

∑
−∞<λ2<λ3

∑
−∞<λ1<λ2

.

For example, ∑
1

refers to the sum of frequencies such that N < λ1 < .. . < λ4 and λ4 ∼ λ5 in the sense that

λ4 ≤ λ5 ≤ 20λ4. We sum over λ4 and λ5 first, denoting by ∑
λ3<λ4∼λ5<∞

, the sum over all dyadic numbers λ4 that

are between λ3 (fixed in this first sum) and positive infinity. We continue in this way, however we do not need to
distinguish between λ1 < .. . < λ4 < N < λ5 and λ1 < .. . < λ5 < N, because in both cases, λ5 ∼ N. The order of
these sums is important. The index N must appear as an upper or lower bound in the last sum (or last two sums)
in each case. Notice that in ∑

5
, we do not need to sum over λ5 as it is comparable to N which is fixed.

By the triangle inequality, we have
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N
∣∣∣∣∫ (|u|4u)vNdxdt

∣∣∣∣≤S1 +S2 +S3 +S4 +S5,

where

Si = N

∣∣∣∣∣∑i

∫
u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5

vNdxdt

∣∣∣∣∣ .
We now bound Si using Hölder’s inequality, Proposition 2.2.2 and Lemma 2.1.3 . We begin with S1:

S1 ≤ N ∑
1
||u1,λ1 ||6,6 · · · ||u5,λ5

||6,6||vN ||6,6

≤ N ∑
1
(λ1 · · ·λ5N)

2
3 ||u1,λ1 ||U6

4
· · · ||u5,λ5

||U6
4
||vN ||U6

4

≤ N ∑
1

N
2
3 (λ1 · · ·λ5)

− 1
3 (λ1||u1,λ1 ||V 2

4
) · · ·(λ1||u5,λ5

||V 2
4
)||vN ||V 2

4
.

We continue,

S1 ≤ N
5
3 (sup

λ1

λ1||u1,λ1 ||V 2
4
) · · ·(sup

λ5

λ5||u5,λ5
||V 2
4
)||vN ||V 2

4∑
1
(λ1 · · ·λ5)

− 1
3

= N
5
3 ||vN ||V 2

4
(sup

λ

λ ||uλ ||V 2
4
)5

∑
1
(λ1 · · ·λ5)

− 1
3 = N

5
3 ||vN ||V 2

4
||u||5X∞ ∑

1
(λ1 · · ·λ5)

− 1
3 .

where ∑
1

is defined in (3.1.5). To evaluate the sum ∑
1
(λ1 · · ·λ5)

− 1
3 , we write

∑
λ3<λ4∼λ5<∞

(λ1 · · ·λ5)
− 1

3 . ∑
λ3<λ5<∞

(λ1λ2λ3)
− 1

3 λ
− 2

3
5 . (λ1λ2λ3)

− 1
3 λ
− 2

3
3 ,

where we have used that for α < 0, ∑
λi<λ j<∞

λ α
j . λ α

i .

Consequently,

∑
1
(λ1 · · ·λ5)

− 1
3 ≤ ∑

N<λ1<∞

∑
λ1<λ2<∞

∑
λ2<λ3<∞

(λ1λ2λ3)
− 1

3 λ
− 2

3
3

≤ ∑
N<λ1<∞

∑
λ1<λ2<∞

(λ1λ2)
− 1

3 λ
− 3

3
2

≤ ∑
N<λ1<∞

(λ1)
− 1

3 λ
− 4

3
1 ≤ N

5
3 ||vN ||V 2

4
||u||5X∞N−

5
3 .

Returning to S1, we have

S1 . ||vN ||V 2
4
||u||5X∞ . (3.1.6)
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We proceed with the second sum. The technique is similar, but requires more finesse in choosing the right
exponents to guarantee we are summing over dyadic numbers with negative exponents at each step. By Hölder’s
inequality, Proposition 2.2.2 and Lemma 2.1.3,

S2 ≤ N ∑
2
||u1,λ1 ||p,p||u2,λ2 ||q,q · · · ||u5,λ5

||q,q||vN ||q,q

≤ N ∑
2

λ

3
2−

5
p

1 (λ2 · · ·λ5N)
3
2−

5
q ||u1,λ1 ||U p

4
||u2,λ2 ||Uq

4
· · · ||u5,λ5

||Uq ||vN ||Uq
4

≤ N ∑
2

N
3
2−

5
q λ

3
2−

5
p−1

1 (λ2 · · ·λ5)
3
2−

5
q−1(λ1||u1,λ1 ||V 2

4
) · · ·(λ5||u5,λ5

||V 2
4
)||vN ||V 2

4

≤ N
3
2−

5
q+1||vN ||V 2

4
||u||5X∞ ∑

2
λ

3
2−

5
p−1

1 (λ2 · · ·λ5)
3
2−

5
q−1,

where we require 1
p +

5
q = 1 for Hölder’s inequality, p,q > 10

3 for Proposition 2.2.2, p,q > 2 for embedding
(2.1.4) and 3

2 −
5
p > 1 for summability, as λ1 is summed from negative infinite and hence requires a positive

exponent. It suffices to choose p = 20 and q = 5× 20
19 . We sum over λ5,λ4,λ3,λ2,λ1, respectively:

∑
2

λ
1
4

1 (λ2 · · ·λ5)
− 9

20 . ∑
−∞<λ1<N

∑
N<λ2<∞

∑
λ2<λ3<∞

λ
1
4

1 (λ2λ3)
− 9

20 λ
− 18

20
3

≤ ∑
−∞<λ1<N

∑
N<λ2<∞

λ
1
4

1 λ
− 9

20
2 λ

− 27
20

2 ≤ ∑
−∞<λ1<N

(λ1)
1
4 N−

36
20 ≤ N−

31
20 ,

and so

S2 . ||vN ||V 2
4
||u||5X∞ . (3.1.7)

The third sum has both λ1 and λ2 summing from negative infinity and so u1 and u2 play the role that u1 did in the
previous sum. Choosing our exponents appropriately, by Hölder’s inequality, Proposition 2.2.2 and Lemma 2.1.3,

S3 ≤ N ∑
3
||u1,λ1 ||20,20||u2,λ2 ||20,20||u3,λ5

|| 40
9 , 40

9
· · · ||u5,λ5

|| 40
9 , 40

9
||vN || 40

9 , 40
9

≤ N ∑
3
(λ1λ2)

5
4 (λ3 · · ·λ5N)

3
8 ||u1,λ1 ||U20

4
||u2,λ2 ||U20

4
||u3,λ3 ||

U
40
9
4

· · · ||u5,λ5
||

U
40
9
4

||vN ||
U

40
9
4

≤ N ∑
3

N
3
8 (λ1λ2)

1
4 (λ3 · · ·λ5)

− 5
8 (λ1||u1,λ1 ||V 2

4
) · · ·(λ1||u5,λ5

||V 2
4
)||vN ||V 2

4

≤ N
11
8 ||vN ||V 2

4
||u||5X∞ ∑

3
(λ1λ2)

1
4 (λ3 · · ·λ5)

− 5
8 .

We sum over λ1,λ4,λ5,λ3,λ2, respectively:
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∑
3
(λ1λ2)

1
4 (λ3 · · ·λ5)

− 5
8 ≤ ∑

−∞<λ2<N
∑

N<λ3<∞

∑
λ3<λ4∼λ5<∞

λ
1
2

2 (λ3 · · ·λ5)
− 5

8

. ∑
−∞<λ2<N

∑
N<λ3<∞

λ
1
2

2 (λ3)
− 15

8 ≤ ∑
−∞<λ2<N

λ
1
2

2 N−
15
8 ≤ N−

11
8 ,

and we obtain

S3 . ||vN ||V 2
4
||u||5X∞ . (3.1.8)

We continue with the fourth sum. By Hölder’s inequality, Proposition 2.2.2 and Lemma 2.1.3,

S4 ≤ N ∑
4
||u1,λ1 ||20,20||u2,λ2 ||20,20||u3,λ5

||20,20||u4,λ4 || 60
17 ,

60
17
||u5,λ5

|| 60
17 ,

60
17
||vN || 60

17 ,
60
17

≤ N ∑
4
(λ1λ2λ3)

5
4 (λ4λ5N)

1
12 ||u1,λ1 ||U20

4
||u2,λ2 ||U20

4
||u3,λ3 ||U20

4
||u4,λ4 ||

U
60
17
4

||u5,λ5
||

U
60
17
4

||vN ||
U

60
17
4

≤ N ∑
4

N
1

12 (λ1λ2λ3)
1
4 (λ4λ5)

− 11
12 (λ1||u1,λ1 ||V 2

4
) · · ·(λ1||u5,λ5

||V 2
4
)||vN ||V 2

4

≤ N
13
12 ||vN ||V 2

4
||u||5X∞ ∑

4
(λ1λ2λ3)

1
4 (λ4λ5)

− 11
12 .

We sum over λ1,λ2,λ4,λ5,λ3, respectively:

∑
4
(λ1λ2λ3)

1
4 (λ4λ5)

− 11
12 ≤ ∑

−∞<λ3<N
∑

N<λ4∼λ5<∞

∑
−∞<λ2<λ3

λ
1
4

2 (λ2λ3)
1
4 (λ4λ5)

− 11
12

≤ ∑
−∞<λ3<N

∑
N<λ4∼λ5<∞

λ
3
4

3 (λ4λ5)
− 11

12

. ∑
−∞<λ3<N

λ
3
4

3 N−
22
12 ≤ N−

13
12 .

This gives us

S4 . ||vN ||V 2
4
||u||5X∞ . (3.1.9)

The fifth sum requires the Bilinear Strichartz Estimate, Proposition 2.2.4 in addition to Hölder, Proposition 2.2.2,
and Lemma 2.1.3,
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S5 ≤ N ∑
5
||u4,λ4vN ||2,2||u1,λ1 || 54

5 , 54
5
· · · ||u3,λ3 || 54

5 , 54
5
||u5,λ5

|| 9
2 ,

9
2

≤ N ∑
5

λ4N−
1
2 (λ1λ2λ3)

28
27 λ

7
18

5 ||u4,λ4 ||V 2
4
||vN ||V 2

4
||u1,λ1 ||

U
54
5
4

· · · ||u3,λ3 ||
U

54
5
4

||u5,λ5
||

U
9
2
4

≤ N ∑
5

N−
1
2 (λ1λ2λ3)

1
27 λ
− 11

18
5 (λ1||u1,λ1 ||V 2

4
) · · ·(λ1||u5,λ5

||V 2
4
)||vN ||V 2

4

≤ N
1
2 ||vN ||V 2

4
||u||5X∞ ∑

5
(λ1λ2λ3)

1
27 λ
− 11

18
5 .

We sum over λ1,λ2,λ3,λ4,λ5 respectively:

∑
5
(λ1λ2λ3)

1
27 λ
− 11

18
5 ≤ ∑

−∞<λ4<N∼λ5

∑
−∞<λ3<λ4

∑
−∞<λ2<λ3

λ
1

27
2 (λ2λ3)

1
27 λ
− 11

18
5

≤ ∑
−∞<λ4<N∼λ5

∑
−∞<λ3<λ4

λ
1
9

3 λ
− 11

18
5

≤ ∑
−∞<λ4<N∼λ5

λ
1
9

4 λ
− 11

18
5 . λ

1
9

5 λ
− 11

18
5 ≤ N−

1
2 ,

and so

S5 . ||vN ||V 2
4
||u||5X∞ . (3.1.10)

Combining (3.1.6), (3.1.7), (3.1.8), (3.1.9), (3.1.10), we have

N
∣∣∣∣∫ (|u|4u)vNdxdt

∣∣∣∣. ||vN ||V 2
4
||u||5X∞ . (3.1.11)

Returning to inequality (3.1.3), we get

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X∞ . sup

N

 sup
||v||V 2

4
=1
||v||V 2

4
||u||5X∞

 .

Since ||vN ||V 2
4
≤ ||v||V 2

4
, we have

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X∞ . ||u||X∞ .

We now prove Prop. 3.1.2.
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Proof. We suppress the interval I for ease of reading. Using the Duhamel representation of the solution, Lemma
2.3.2, and breaking the sum into its Littlewood-Paley frequency projections,

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X2 = sup

||v||Y 2=1
|
∫

I×R3

(|u|4uv)dxdt|

= sup
||v||Y 2=1

|∑
λi,N

∫
I×R3

u1,λ1 · · ·u5,λ5
vNdtdx|,

where the sum ∑
λi,N

is over all dyadic scales λi, i = 1, . . . ,5 and N. Notice that our duality lemma in this case,

Lemma 2.3.2 works with the whole space X2, not just U2
4. This is in contrast to our previous multilinear estimate,

Prop. 3.1.1. Because of this, we must decompose v into frequency projections vN and sum over them as well.

We break up the sum into five sub-sums, based on the relative position of the various λi and N:

∑
λi,N

∫
I×R3

u1,λ1 · · ·u5,λ5
vNdtdx . ∑

1

∫
I×R3

u1,λ1 · · ·u5,λ5
vNdtdx

+ . . .+

∑
5

∫
I×R3

u1,λ1 · · ·u5,λ5
vNdtdx,

where

∑
1

= ∑
−∞<λ5(∼λ4)<∞

∑
−∞<λ3<λ5

∑
−∞<λ2<λ3

∑
−∞<λ1<λ2

∑
−∞<N<λ1

(3.1.12)

∑
2

= ∑
−∞<λ5(∼λ4)<∞

∑
−∞<λ3<λ5

∑
−∞<λ2<λ3

∑
−∞<N<λ2

∑
−∞<λ1<N

∑
3

= ∑
−∞<λ5(∼λ4)<∞

∑
−∞<λ3<λ5

∑
−∞<N<λ3

∑
−∞<λ2<N

∑
−∞<λ1<λ2

∑
4

= ∑
−∞<λ5(∼λ4)<∞

∑
−∞<N<λ5

∑
−∞<λ3<N

∑
−∞<λ2<λ3

∑
−∞<λ1<λ2

∑
5

= ∑
−∞<N(∼λ5)<∞

∑
−∞<λ4<N

∑
−∞<λ3<λ4

∑
−∞<λ2<λ3

∑
−∞<λ1<λ2

.

Note that in each case, the largest two frequencies must be comparable or the integral will be 0.

We can treat ∑
1

through ∑
4

in a similar way. For i ∈ {1,2,3,4}, we must bound

sup
||v||Y 2=1

|∑
i

∫
u1,λ1 · · ·u5,λ5

vNdtdx|=: Si. Again, we require the more refined Strichartz estimate in this case,

Bilinear Strichartz Proposition 2.2.4. By Hölder, Proposition 2.2.4, Proposition 2.2.2 and Lemma 2.1.3,
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Si = sup
||v||Y 2=1

|∑
i

∫
I×R3

u1,λ1 · · ·u4,λ4u5,NvNdtdx|

≤ sup
||v||Y 2=1

∑
i
||u5,λ5

vN ||2,2||u1,λ1 || 54
5 , 54

5
||u2,λ2 || 54

5 , 54
5
||u3,λ3 || 54

5 , 54
5
||u4,λ4 || 92 , 9

2

≤ sup
||v||Y 2=1

∑
i

Nλ
− 1

2
5 (λ1λ2λ3)

28
27 λ

7
18

4 ||u5,λ5
||V 2
4
||vN ||V 2

4
||u1,λ1 ||

U
54
5
4

· · · ||u3,λ3 ||
U

54
5
4

||u4,λ4 ||
U

9
2
4

≤ sup
||v||Y 2=1

∑
i

N2(λ1λ2λ3)
1
27 λ
− 19

9
5 (N−1||vN ||V 2

4
)(λ1||u1,λ1 ||V 2

4
) · · ·(λ5||u5,λ5

||V 2
4
)

Grouping the terms and pulling out the supremum over λi||ui,λi ||V 2
4

for i = 1,2,3, we have

Si ≤ sup
||v||Y 2=1

(
sup
λ1

λ1||u1,λ1 ||V 2
4
) · · ·(sup

λ3

λ3||u3,λ3 ||V 2
4
)(sup

N
N−1||vN ||V 2

4
)×

×∑
i

N2(λ1λ2λ3)
1

27 λ
− 19

9
5 (λ4||u4,λ4 ||V 2

4
)(λ5||u5,λ5

||V 2
4
)

)
.

We observe sup
N

N−1||vN ||V 2
4
≤ ||v||Y 2 (this is just the embedding `2 ⊂ `∞). We then sum over λ1,λ2,λ3 and N in

the order (dependent on i) prescribed by Equation (3.1.12), analogous to the sums in Prop. 3.1.1. In each case
(i = 1,2,3,4), we are left with the final sum which is over λ4 ∼ λ5,

Si . sup
||v||Y 2=1

||u||3X∞ ||v||Y 2 ∑
−∞<λ4(∼λ5)<∞

(λ4||u4,λ4 ||V 2
4
)(λ5||u5,λ5

||V 2
4
)

. ||u||3X∞ ∑
−∞<λ4(∼λ5)<∞

(λ4||u4,λ4 ||V 2
4
)(λ5||u5,λ5

||V 2
4
).

By Cauchy-Schwarz, we have

Si . ||u||3X∞( ∑
−∞<λ4<∞

λ
2
4 ||u4,λ4 ||

2
V 2
4
)

1
2 ( ∑
−∞<λ5<∞

λ
2
5 ||u5,λ5

||2V 2
4
)

1
2

= ||u||3X∞ ||u||2X2 .

The last sum can be treated in the following way. Letting S5 := sup
||v||Y 2=1

|∑
5

∫
I×R3

u1,λ1 · · ·u5,λ5
vNdtdx|, by Hölder,

Proposition 2.2.4, Proposition 2.2.2 and Lemma 2.1.3,
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S5 = sup
||v||Y 2=1

|∑
1

∫
I×R3

u1,λ1 · · ·u4,λ4u5,NvNdxdt|

≤ sup
||v||Y 2=1

∑
5
||u4,λ4vN ||2,2||u1,λ1 || 54

5 , 54
5
||u2,λ2 || 54

5 , 54
5
||u3,λ3 || 54

5 , 54
5
||u5,λ5

|| 9
2 ,

9
2

≤ sup
||v||Y 2=1

∑
5

λ4N−
1
2 (λ1λ2λ3)

28
27 λ

7
18

5 ||u4,λ4 ||V 2
4
||vN ||V 2

4
||u1,λ1 ||

U
54
5
4

· · · ||u3,λ3 ||
U

54
5
4

||u5,λ5
||

U
9
2
4

≤ sup
||v||Y 2=1

∑
5

N−
1
9 (λ1λ2λ3)

1
27 (N−1||vN ||V 2

4
)(λ1||u1,λ1 ||V 2

4
) · · ·(λ5||u5,λ5

||V 2
4
).

Pulling out the supremum’s over λi||ui,λi ||V 2
4

, for i = 1,2,3,4 and summing over λ1,λ2,λ3,λ4, as prescribed by
Equation (3.1.12), we have

S5 ≤ sup
||v||Y 2=1

(sup
λ1

λ1||u1,λ1 ||V 2
4
) · · ·(sup

λ4

λ4||u4,λ4 ||V 2
4
)∑

5
N−

1
9 (λ1λ2λ3)

1
27 (N−1||vN ||V 2

4
)(λ5||u5,λ5

||V 2
4
)

≤ sup
||v||Y 2=1

||u||4X∞ ∑
−∞<N(∼λ5)<∞

(N−1||vN ||V 2
4
)(λ5||u5,λ5

||V 2
4
).

We apply Cauchy-Schwarz and obtain

S5 ≤ sup
||v||Y 2=1

||u||4X∞( ∑
−∞<N<∞

N−2||vN ||2V 2
4
)

1
2 ( ∑
−∞<λ5<∞

λ
2
5 ||u5,λ5

||2V 2
4
)

1
2

≤ sup
||v||Y 2=1

||u||4X∞ ||u||X2 ||v||Y 2

≤ ||u||4X∞ ||u||X2 .

Thus,

sup
||v||Y 2=1

| ∑
(λi,N)

∫
I×R3

u1,λ1 · · ·u5,λ5
vNdxdt| ≤ ||u||4X∞ ||u||X2 . (3.1.13)

This is in fact stronger than we need for our Lemma, since X2 embeds continuously into X∞. Combining these

cases, we have ||
t∫

t0
ei(t−s)4 (|u|4u

)
(s)ds||X2 . ||u||3X∞ ||u||2X2 .

3.2 Multilinear Estimates in Xq and L10L10

We require the following multilinear interpolation result for the multilinear estimates in the range (2,∞). This
lemma is taken from [23] and can also be found in [24]. The proof can be found in those sources as well. If A
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and B are a compatible interpolation pair, we let [A,B]s denote the complex interpolation pair derived from A an
B. See [24] and [23] for more details.

Lemma 3.2.1. Let (Ai,Bi), i = 1,2, . . . ,n and (A,B) be interpolation pairs. Let L(x1, . . . ,xn), xi ∈ Ai∩Bi, be a

multilinear operation defined in the direct sum ⊕n
i=1(Ai∩Bi) with values in A∩B and such that

||L(x1, . . . ,xn)||A ≤M0

n

∏
1
||xi||Ai (3.2.1)

and

||L(x1, . . . ,xn)||B ≤M1

n

∏
1
||xi||Bi . (3.2.2)

Then if C = [A,B]s and Ci = [Ai,Bi]s, we have

||L(x1, . . . ,xn)||C ≤M1−s
0 Ms

1

n

∏
1
||xi||Ci , (3.2.3)

for 0≤ s≤ 1.

Proposition 3.2.2. For 2≤ q≤ ∞, let u ∈ Xq(I) for the time interval I = [t0, t1). Then

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||Xq(I) . ||u||3X∞(I)||u||

2
Xq(I). (3.2.4)

Proof. We apply Lemma 3.2.1. Any two of X∞ ⊂ Xq ⊂ X2 are compatible interpolation pairs. Furthermore,
(by [38], Theorem 9.3.2 for example) we have that for some s, [X2,X∞]s = Xq. From the proof of Prop. 3.1.1, we

see that the operator I (u) :=
t∫

t0
ei(t−s)4(|u|4u)(s)ds can be extended to a bounded multilinear operator (which by

abuse of notation, we also refer to as I ),

I : X∞×X∞×X∞×X∞×X∞→ X∞ (3.2.5)

I (u1,u2,u3,u4,u5) =

t∫
t0

(
ei(t−s)4u1ū2u3ū4u5

)
(s)ds. (3.2.6)

Similarly, we can extend I to a multilinear mapping defined on X2×X2×X∞×X∞×X∞,

I : X2×X2×X∞×X∞×X∞→ X2 (3.2.7)

I (u1,u2,u3,u4,u5) =

t∫
t0

(
ei(t−s)4u1ū2u3ū4u5

)
(s)ds. (3.2.8)
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By Prop. 3.1.1 and Prop. 3.1.2 we have the estimates

||I (u1, . . .u5)||X∞ ≤M0||u1||X∞ ||u2||X∞ ||u3||X∞ ||u4||X∞ ||u5||X∞ (3.2.9)

||I (u1, . . .u5)||X2 ≤M1||u1||X2 ||u2||X2 ||u3||X∞ ||u4||X∞ ||u5||X∞ . (3.2.10)

If we take L = I , A = Ai = X∞, for i = 1, . . . ,5, B = B1 = B2 = X2 and B3 = B4 = B5 = X∞, then we may apply
Prop. 3.1.1. In particular, for q ∈ (2,∞), if s is such that Xq = [X2,X∞]s, then from Lemma 3.2.1 we obtain the
estimate

||I (u1, . . . ,u5)||Xq ≤M1−s
0 Ms

1||u1||X∞ ||u2||X∞ ||u3||X∞ ||u4||Xq ||u5||Xq . (3.2.11)

In Chapter 4 we will prove some well-posedness results. These will require a standard fixed-point argument,
which will require smallness in some norm. In Theorem 4.2.1, this requirement is satisfied by the assumed
smallness of the initial data. In Theorem 4.2.2 and Theorem 4.2.4, we use the fact that nonlinearity contains
terms that are in L10L10. We require a multilinear estimate with one of the factors in L10L10, so that by shrinking
the time interval, we can ensure these terms are small. See also Remark 1.4.3. This multilinear estimate will also
be required for the stability theorem, Theorem 4.2.6 for similar reasons.

Proposition 3.2.3. For 2≤ q≤ ∞, let u ∈ Xq(I)∩L10
t L10

x (I×R3) for the time interval I = [t0, t1). Then

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||Xq(I) . ||u||L10

t L10
x (I×R3)||u||

2
X∞(I)||u||

2
Xq(I). (3.2.12)

Proof. The proof is similar to the proof of Prop. 3.2.2. This time we will not split up the proof into two lemmas.
We drop the interval for ease of reading and begin with q = ∞.

q = ∞:

By Lemma 2.3.1 and decomposing the each function into its Littlewood-Paley projections as in Prop. 3.1.1 and
Prop. 3.1.2, we have

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X∞ ≤ sup

N

 sup
||v||V 2

4
=1

N
∣∣∣∣∫I×R3

|u|4uvNdxdt
∣∣∣∣


≤ sup
N

 sup
||v||V 2

4
=1

N ∑
λi

∣∣∣∣∫ uu1,λ1u2,λ2u3,λ3u4,λ4vNdxdt
∣∣∣∣
 ,

where the sum is over all dyadic numbers λi, i = 1,2,3,4, and ui denotes either u or ū. Notice we do not break
the first u into frequencies. We break up the sum into parts depending on the relationship of N compared to λi.
This time we will only show the cases where N > λi for i = 1,2,3,4 and where N < λi for i = 1,2,3,4.
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Case 1 : N < λi, i = 1,2,3,4. I.e. we consider the sum

∑
1
= ∑

N<λ1<∞

∑
λ1<λ2<∞

∑
λ2<λ3∼λ4<∞

. (3.2.13)

By Hölder’s inequality, Proposition 2.2.2 and Lemma 2.1.3,

S1 := sup
N

 sup
||v||V 2

4
=1

N ∑
1

∣∣∣∣∫ uu2,λ2u3,λ3u4,λ4vNdxdt
∣∣∣∣


≤ sup
N

 sup
||v||V 2

4
=1

N ∑
1
||u||10,10

4

∏
i=1
||ui,λi || 50

9 , 50
9
||vN || 50

9 , 50
9


≤ sup

N

 sup
||v||V 2

4
=1

N ∑
1
||u||10,10

4

∏
i=1

λ
6
10

i ||ui||
U

50
9
4

N
6
10 ||vN ||

U
50
9
4


≤ sup

N

 sup
||vN ||V 2

4
=1

N ∑
1
||u||10,10

4

∏
i=1

λ
6

10
i ||ui||V 2

4
N

6
10 ||vN ||V 2

4

 .

By Definition 2.1.7, we have

S1 ≤ ||u||10,10||u||X∞ sup
N

 sup
||v||V 2

4
=1
||vN ||V 2

4
N ∑

1

4

∏
i=1

λ
− 4

10
i N

6
10


≤ ||u||10,10||u||4X∞ sup

N

(
N

16
10 ∑

1

4

∏
i=1

λ
− 4

10
i

)
,

where we have used ||vN ||V 2
4
≤ ||v||V 2

4
. We sum in order, λ4,λ3,λ2,λ1, as in the proof of Prop. 3.1.1, and we

obtain

S1 . ||u||10,10||u||4X∞ sup
N

(
N

16
10 N−

16
10

)
≤ ||u||10,10||u||4X∞ .

Case 2 : N > λi, i = 1,2,3,4. I.e. we consider the sum

∑
4
= ∑
−∞<λ3<N∼λ4

∑
−∞<λ2<λ3

∑
−∞<λ1<λ2

. (3.2.14)

By Hölder’s inequality, Proposition 2.2.2, Proposition 2.2.4 and Lemma 2.1.3,
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S4 := sup
N

 sup
||v||V 2

4
=1

N ∑
4

∫
uu1,λ1u2,λ2u3,λ3u4,λ4vN


≤ sup

N

 sup
||v||V 2

4
=1

N ∑
4
||u||10,10||u2,λ2vN ||2,2||u1,λ1 ||15,15||u3,λ3 ||15,15||u4,λ4 || 15

4 , 15
4


≤ sup

N

 sup
||v||V 2

4
=1

N ∑
4
||u||10,10λ2||u2,λ2 ||V 2

4
N−

1
2 ||vN ||V 2

4
λ

7
6

1 ||u1,λ1 ||U15
4

λ
7
6

3 ||u3,λ3 ||U15
4

λ
1
6

4 ||u4,λ4 ||
U

15
4
4


≤ sup

N

 sup
||v||V 2

4
=1

N ∑
4
||u||10,10λ2||u2,λ2 ||V 2

4
N−

1
2 ||vN ||V 2

4
λ

7
6

1 ||u1,λ1 ||V 2
4

λ
7
6

3 ||u3,λ3 ||V 2
4

λ
1
6

4 ||u4,λ4 ||V 2
4

 .

We have ||vN ||V 2
4
≤ ||v||V 2

4
, and so by Definition 2.1.7, we have

S4 ≤ sup
N

 sup
||v||V 2

4
=1

N ∑
4
||u||10,10||v||V 2

4
(λ1||u1,λ1 ||V 2

4
)(λ2||u2,λ2 ||V 2

4
)(λ3||u3,λ3 ||V 2

4
)(λ4||u4,λ4 ||V 2

4
)N−

1
2 λ

1
6

1 λ
1
6

3 λ
−5
6

4


≤ ||u||10,10||u||4X∞ sup

N

(
N ∑

4
N−

1
2 λ

1
6

1 λ
1
6

3 λ
−5
6

4

)
.

We sum in order, λ1,λ2,λ3,λ4, and we obtain

S4 . ||u||10,10||u||4X∞ sup
N

(
N

1
3 N−

1
3

)
≤ ||u||10,10||u||4X∞ .

We have shown that

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X∞ . ||u||4X∞ ||u||L10

t L10
x
. (3.2.15)

q = 2:

Using the Duhamel representation of the solution, Lemma 2.3.2, and decomposing the terms of the sum into
their Littlewood-Paley frequency projections,
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||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X2 = sup

||v||Y 2=1
|
∫

I×R3

(|u|4uv)dxdt| (3.2.16)

= sup
||v||Y 2=1

|∑
λi,N

∫
I×R3

uu1,λ1u2,λ2u3,λ3u4,λ4vNdxdt|,

where the sum ∑
λi,N

is over all dyadic scales for λi, i = 1, . . . ,4 and N.

We break up the sum based on the relative position of the various λi and N. Note that in each case, the largest
two frequencies must be comparable or the integral will be 0. Again, we will only show the cases where N > λi

for i = 1,2,3,4 and where N < λi for i = 1,2,3,4.

Case 1 : N < λi, i = 1,2,3,4. We consider the sum

∑
1

:= ∑
−∞<λ4(∼λ3)<∞

∑
−∞<λ2<λ4

∑
−∞<λ1<λ2

∑
−∞<N<λ1

(3.2.17)

We must bound sup
||v||Y 2=1

|∑
1

∫
u1,λ1 · · ·u4,λ4vNdxdt|=: S1. By Hölder, Proposition 2.2.2 and Lemma 2.1.3,

S1 = sup
||v||Y 2=1

|∑
1

∫
u1,λ1 · · ·u4,λ4vNdxdt|

≤ sup
||v||Y 2=1

∑
1
||u||10,10

4

∏
i=1
||ui,λi || 50

9 , 50
9
||vN || 50

9 , 50
9

≤ sup
||v||Y 2=1

∑
1
||u||10,10

4

∏
i=1

λ
6

10
i ||ui||

U
50
9
4

N
6

10 ||vN ||
U

50
9
4

≤ sup
||v||Y 2=1

∑
1
||u||10,10

4

∏
i=1

λ
− 4

10
i

(
λi||ui||V 2

4

)
N

6
10 ||vN ||V 2

4
.

By Definition 2.1.7, we have

S1 ≤ ||u||10,10 sup
||v||Y 2=1

sup
N

(
N−1||vN ||V 2

4

)
||u||2X∞ ∑

1
(λ1λ2λ3λ4)

− 4
10

(
λ3||u3||V 2

4

)(
λ4||u4||V 2

4

)
N

16
10 .

By the continuous embedding `2 ⊂ `∞, we have that sup
N

(
N−1||vN ||V 2

4

)
≤ ||N−1||vN ||V 2

4
||`2 = ||v||Y 2 . We sum

over N, λ1, λ2 and apply Cauchy-Schwarz to obtain
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S1 . sup
||v||Y 2=1

||u||10,10||v||Y 2 ||u||2X∞ ∑
−∞<λ3∼λ4<∞

(
λ3||u3||V 2

4

)(
λ4||u4||V 2

4

)
(3.2.18)

. ||u||10,10||u||2X∞

(
∑

−∞<λ3<∞

(
λ3||u3||V 2

4

)2
) 1

2
(

∑
−∞<λ4<∞

(
λ4||u4||V 2

4

)2
) 1

2

(3.2.19)

≤ ||u||10,10||u||2X∞ ||u||2X2 . (3.2.20)

(3.2.21)

Case 2 : N > λi, i = 1,2,3,4. I.e. we consider the sum

∑
4

:= ∑
−∞<N(∼λ4)<∞

∑
−∞<λ3<N

∑
−∞<λ2<λ3

∑
−∞<λ1<λ2

. (3.2.22)

Letting S4 := sup
||v||Y 2=1

|∑
4

∫
uu1,λ1 · · ·u4,λ4vNdtdx|, by Hölder, Proposition 2.2.4, Proposition 2.2.2 and Lemma

2.1.3,

S4 = sup
||v||Y 2=1

|∑
4

∫
uu1,λ1 · · ·u4,λ4vNdxdt|

≤ sup
||v||Y 2=1

∑
4
||u||10,10||u2,λ2vN ||2,2||u1,λ1 ||15,15||u3,λ3 ||15,15||u4,λ4 || 15

4 , 15
4

≤ ||u||10,10 sup
||v||Y 2=1

∑
4

N−
1
2 λ2λ

7
6

1 λ
7
6

3 λ
1
6

4 ||u2,λ2 ||V 2
4
||vN ||V 2

4
||u1,λ1 ||U15

4
||u3,λ3 ||U15

4
||u4,λ4 ||

U
15
4
4

≤ ||u||10,10 sup
||v||Y 2=1

∑
4

N−
1
2 λ2λ

7
6

1 λ
7
6

3 λ
1
6

4 ||u2,λ2 ||V 2
4
||vN ||V 2

4
||u1,λ1 ||V 2

4
||u3,λ3 ||V 2

4
||u4,λ4 ||V 2

4
.

Summing over λ1, λ2 and λ3, and applying Cauchy-Schwarz, we have

S4 . ||u||10,10 sup
||v||Y 2=1

(sup
λ1

λ1||u1,λ1 ||V 2
4
) · · ·(sup

λ3

λ3||u3,λ3 ||V 2
4
)∑

4
N

1
2 λ

1
6

1 λ
1
6

3 λ
− 5

6
4 (N−1||vN ||V 2

4
)(λ4||u4,λ4 ||V 2

4
)

≤ ||u||10,10 sup
||v||Y 2=1

||u||3X∞ ∑
−∞<N(∼λ5)<∞

(N−1||vN ||V 2
4
)(λ4||u4,λ4 ||V 2

4
)

. ||u||10,10 sup
||v||Y 2=1

||u||3X∞

(
∑

−∞<N<∞

(
N−1||vN ||V 2

4

)2
) 1

2
(

∑
−∞<λ4<∞

(
λ4||u4,λ4 ||V 2

4

)2
) 1

2

,

and so,

S4 = ||u||10,10 sup
||v||Y 2=1

||u||3X∞ ||u||X2 ||v||Y 2 ≤ ||u||10,10||u||3X∞ ||u||X2 .

Thus,

sup
||v||Y 2=1

|∑
4

∫
uu1,λ1 · · ·u4,λ4vNdxdt| ≤ ||u||10,10||u||3X∞ ||u||X2 . (3.2.23)
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This is in fact stronger than we need for our Lemma, since X2 embeds continuously into X∞. Combining (3.2.18)
and (3.2.23), by (3.2.16) we have

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||X2 . ||u||10,10||u||2X∞ ||u||2X2 . (3.2.24)

In a similar manner to Prop. 3.2.2, we use Lemma 3.2.1 to interpolate between Equation (3.2.15) and Equation
(3.2.24). This gives us for all 2≤ q≤ ∞,

||
t∫

t0

ei(t−s)4 (|u|4u
)
(s)ds||Xq . ||u||10,10||u||2X∞ ||u||2Xq . (3.2.25)

Remark 3.2.4. By Lemma 2.1.9, we see that Prop. 3.2.3 is stronger than Prop. 3.2.2 in the case q = 2.

We will need a lemma that tells us for a given u ∈ L10
t L10

x (I×R3), how many sub-intervals Ik ⊂ I will suffice so
that on each interval, we have ||u||L10

t L10
x (Ik×R3) < η .

Lemma 3.2.5. Given η , we can partition the time intervals I into
||u||10

L10
t L10

x (Ik×R3)

η10 many sub-intervals Ik so that on

each interval, ||u||L10
t L10

x (Ik×R3) < η .

Proof. Let n be the number of intervals required. We will assume for simplicity that there is no remainder when
we divide up our intervals.

||u||L10
t L10

x (I×R3) = (
n

∑
k=1

∫
I×R3

|u|10
χ(Ik×R3))

1
10 = (

n

∑
k=1

∫
Ik×R3

|u|10)
1

10 = n
1

10 η , (3.2.26)

so n =
||u||10

L10
t L10

x (I×R3)

η10 .



Chapter 4

Global Well-posedness and Scattering

4.1 Continuity of Solutions with Respect to Time

The proofs of Prop. 3.1.1, Prop. 3.1.2 can be used to prove that solutions to (NLS) are continuous in time in Xq.

In particular, for q = 2 and q = ∞, we can see that the nonlinear term
t∫

0
e−i(t−s)4 (|u|4u

)
(s)ds can be bounded by

a sum of products of uN in a collection of Lebesgue spaces. For example, let us assume that u is a solution on the
interval [0,T ). Then we know ||u||X∞

[0,T )
< ∞. If we look at the proof of Prop. 3.1.1, we see that in the case N < λi

for all i,

S1 ≤ N ∑
1
||u1,λ1 ||L6

t ,L6
x([0,T )×R3) · · · ||u5,λ5

||L6
t L6

x([0,T )×R3)||vN ||L6
t L6

x([0,T )×R3) . ||u||
5
X∞[0,T ). (4.1.1)

Since the right side of the above equation is bounded, by the fungibility of Lebesgue spaces we know that for
every ε > 0, there exists a time T̄ such that

N ∑
1
||u1,λ1 ||L6

t L6
x([0,T̄ )×R3) · · · ||u5,λ5

||L6
t L6

x([0,T̄ )×R3)||vN ||L6
t L6

x([0,T̄ )×R3) ≤ ε, (4.1.2)

and so S1 ≤ ε. A similar statement can be made for Si for i = 2,3,4,5 and a similar argument can be made in
the case q = 2 by examining the proof of Prop. 3.1.2. For 2 < q < ∞, we must decompose the solution into high
and low frequencies.

We now discuss the linear term. For u0 ∈ Ḃ1
2,q, if 2≤ q < ∞, the linear term eit4u0 is continuous in time in Ḃ1

2,q.
Indeed,

||eit4u0−u0||Ḃ1
2,q

=

(
∑
N

Nq||(e−it|ξ |2 −1)(û0)N ||qL2

) 1
q

,

so for any N̄, we can find a t̄ > 0 such that for N < N̄ and 0 < t < t̄, |eitN2 −1|< ε and continuity follows.
However, this relies on the fact that N||(eit|ξ |2 −1)(û0)N ||L2 decays in N. For q = ∞, we do not have this decay
and in fact we cannot have continuity. Indeed, for any t > 0, for any ε > 0, there exists an N such that
|eitN2 −1|> ε . We do however have weak continuity in the case q = ∞, as can be shown by a similar argument.

40
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Lemma 4.1.1. (Continuity) For 2≤ q < ∞, solutions to (NLS) are continuous in time in Xq and in Ḃ1
2,q. For

q = ∞, solutions to (NLS) are weakly continuous in time in Xq and in Ḃ1
2,q. Furthermore, the nonlinear term

||
t∫

0
e−i(t−s)4 (|u|4u

)
(s)ds||Xq[0,T ) converges to 0 as t→ 0 for 2≤ q≤ ∞.

Proof. Let u be a solution to (NLS) on the interval [0, T̃ ). We real the Duhamel form of the solution

u(t,x) = eit4u0− i
t∫

0

ei(t−s)4(|u|4u)(s)ds.

Since the linear Schrödinger solution eit4u0 is continuous in time for 2≤ q < ∞ and weakly continuous for
q = ∞, we just need to show that for every ε > 0, there exists a time 0 < T̄ < T̃ such that

||
t∫

0

e−i(t−s)4 (|u|4u
)
(s)ds||Xq < ε. (4.1.3)

We begin with the case q = ∞. From the proof of Prop. 3.1.1, we see that for small T ′ > 0,

||
t∫

0

ei(t−s)4(|u|4u)(s)ds||X∞

[0,T ′)
≤

5

∑
i=1

N ∑
i
||u1,λ1 ||Lq1

t ,L
r1
x ([0,T ′)×R3) · · · ||u5,λ5

||Lq5
t L

r5
x ([0,T ′)×R3)

||vN ||Lq6
t L

r6
x ([0,T ′)×R3)

≤ ||u||5X∞[0,T ′) < ∞,

for (qk,rk) = (qk,i,rk,i) and ||v||V 2
4
≤ 1. We can then find 0 < T̄ < T ′ that satisfies

5

∑
i=1

N ∑
i
||u1,λ1 ||Lq1

t ,L
r1
x ([0,T̄ )×R3) · · · ||u5,λ5

||Lq5
t L

r5
x ([0,T̄ )×R3)

||vN ||Lq6
t L

r6
x ([0,T̄ )×R3)

≤ ε, (4.1.4)

and so Equation (4.1.3) is true for q = ∞.

For the case q = 2, from the proof of Prop. 3.1.2 we see that for small enough T ′ > 0,

||
t∫

0

ei(t−s)4(|u|4u)(s)ds||X2
[0,T ′)

.
5

∑
i=1

∑
i
||u1,λ1 ||Lq1

t ,L
r1
x ([0,T ′)×R3) · · · ||u5,λ5

||Lq5
t L

r5
x ([0,T ′)×R3)

||vN ||Lq6
t L

r6
x ([0,T ′)×R3)

≤ ||u||5X2[0,T ′) < ∞,

for (qk,rk) = (qk,i,rk,i) and ||v||Y 2 ≤ 1. We can then find a T̄ > 0 that satisfies

5

∑
i=1

∑
i
||u1,λ1 ||Lq1

t ,L
r1
x ([0,T̄ )×R3) · · · ||u5,λ5

||Lq5
t L

r5
x ([0,T̄ )×R3)

||vN ||Lq6
t L

r6
x ([0,T̄ )×R3)

≤ ε, (4.1.5)

and so Equation (4.1.3) holds for q = 2.

Let 2 < q < ∞. Let uN≤N̄ be the frequency projection of u onto dyadic frequencies less than or equal to N̄, where
N̄ will be chosen later, and uN>N̄ be defined similarly. Then for small enough T ′,



CHAPTER 4. GLOBAL WELL-POSEDNESS AND SCATTERING 42

||
t∫

0

ei(t−s)4(|u|4u)(s)ds||Xq
[0,T ′)

≤ ||
t∫

0

ei(t−s)4(|uN≤N̄ +uN>N̄ |4(uN≤N̄ +uN>N̄))(s)ds||Xq
[0,T ′)

≤ ∑
i
||

t∫
0

ei(t−s)4(ui,1ui,2ui,3ui,4ui,5)(s)ds||Xq
[0,T ′)

,

where ui, j ∈ {uN≤N̄ , ūN≤N̄ ,uN>N̄ , ūN>N̄} for all i, j. For each term in the sum with at least one high frequency
function, we use Prop. 3.2.2 to bound it by

||
t∫

0

ei(t−s)4(ui,1ui,2ui,3ui,4ui,5)(s)ds||Xq
[0,T ′)

≤ ||ui,1||Xq
[0,T ′)
||ui,2||Xq

[0,T ′)
||ui,3||Xq

[0,T ′)
||ui,4||Xq

[0,T ′)
||ui,5||Xq

[0,T ′)

≤ ||u||4Xq
[0,T ′)
||uN>N̄ ||Xq

[0,T ′)
.

Since ||u||Xq
[0,T ′)

=

(
∑
N

Nq ‖uN(t)‖q
V 2
4[0,T

′)

) 1
q

< ∞, we can choose N̄ so that

||u||4Xq
[0,T ′)
||uN>N̄ ||Xq

[0,T ′)
<

ε

100
. (4.1.6)

The only other terms we need to bound are the terms with only low frequency components. But by Definition
2.1.7, we see that uN<N̄ ∈ X2

[0,T ′). Because `2 ⊂ `q, we can use the proof of Prop. 3.1.2 again to bound these
terms. We suppress the index i, so that u j = ui, j:

||
t∫

0

ei(t−s)4(u1u2u3u4u5)(s)ds||Xq
[0,T ′)

≤ ||
t∫

0

ei(t−s)4(u1u2u3u4u5)(s)ds||X2
[0,T ′)

≤
5

∑
i=1

∑
i
||u1,λ1 ||Lq1

t ,L
r1
x ([0,T ′)×R3) · · · ||u5,λ5

||Lq5
t L

r5
x ([0,T ′)×R3)

||vN ||Lq6
t L

r6
x ([0,T ′)×R3)

≤ ||uN<N̄ ||5X2
[0,T ′)

< ∞.

By the fungibility of the Lebesgue spaces, we can then choose T̄ appropriately small so that

||
t∫

0
ei(t−s)4(ui,1ui,2ui,3ui,4ui,5)(s)ds||Xq

[0,T̄ )
< ε

100 .

Combining these estimates, we have that for T̄ small enough, Equation (4.1.3) holds for 2 < q < ∞.

Continuity in the Besov space Ḃ1
2,q follows from the continuous embedding Xq ⊂ L∞

t Ḃ1
2,q from Lemma 2.1.8.
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Corollary 4.1.2. For 2≤ q≤ ∞ and u ∈ Xq, for every ε there exists T ′ such that

||
t∫

0

ei(t−s)4 (|u|4u
)
(s)||Xq[0,T ′) < ε. (4.1.7)

4.2 Local Well-posedness and Stability

Theorem 4.2.1. (Small Data Global Well-Posedness) Let u0 ∈ Ḃ1
2,q, for 2≤ q≤ ∞. There exists η0 such that if

η < η0 and ||u0||Ḃ1
2,q

< η , then u0 evolves to a unique solution u(t,x) to Equation (1.1.1) which lies in

Xq([0,∞))∩C0
t Ḃ1

2,q
(
[0,∞)×R3

)
for q < ∞ and in X∞([0,∞))∩L∞

t Ḃ1
2,∞
(
[0,∞)×R3

)
for q = ∞. Furthermore,

||u||Xq[0,∞) < 2η .

Proof. We run a fixed point argument in the ball B = {u : ||u||Xq(I) < 2η}∩{u : ||u||L∞
t Ḃ1

2,q(I×R3)}< 2η . Recall

Γu = eit4uo− i
t∫

0
ei(t−s)4|u(s)|4u(s)ds. By Lemma 2.2.1, Prop. 3.2.2,

||Γu||Xq ≤ ||eit4u0||Xq + ||
t∫

T0

ei(t−s)4|u(s)|4u(s)ds||Xq (4.2.1)

≤ η + ||u||5Xq (4.2.2)

≤ η +(2η)5. (4.2.3)

If η0 is chosen small enough, then (2η)5 < η and we have

||Γu||Xq < 2η , (4.2.4)

By Lemma (2.1.8), ||Γu||L∞
t Ḃ1

2,q
≤ ||u||Xq , and we see that Γ maps B to itself.

We now show that Γ is a contraction on B. Consider u,v ∈ B. Since Γu and Γv have the same linear terms,

‖Γu−Γv‖Xq = ||
t∫

T0

ei(t−s)4 (|u|4u−|v|4v
)
(s)ds||Xq . (4.2.5)

Using Lemma 2.3.1, the algebraic inequality ||u|4u−|v|4v| ≤ |u− v|
(
|u|4−|v|4

)
and Prop. 3.2.2, we have

‖Γu−Γv‖Xq ≤ ‖u− v‖Xq

(
‖u‖4

Xq +‖v‖4
Xq

)
≤ ‖u− v‖Xq

(
(2η)4 +(2η)4

)
.

By Lemma (2.1.8), we have the same bounds in the space L∞
t Ḃ1

2,q. This is a contraction if η is chosen small
enough. Continuity follows from Lemma 4.1.1.
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By Theorem 1.2.1, for u0 ∈ Ḣ1, there exists a global solution u to (NLS) with ||u||L10
t L10

x ([0,∞)×R3) <C(||u0||Ḣ1).
We will need global bounds for such solutions in the Xq norm.

Lemma 4.2.2. Let u0 ∈ Ḣ1. Then there exists a unique global solution u(t,x) to (NLS) for all time with

u ∈C0
t Ḣ1([0,∞)×R3)∩Xq([0,∞)). Furthermore for any 2≤ q≤ ∞,

||u||Xq([0,∞) ≤C(||u0||Ḣ1 , ||u||L10
t L10

x ([0,∞)×R3)).

Proof. Since u0 ∈ Ḣ1, we can apply Theorem 1.2.1 and obtain a global solution to (NLS) which we call v(t,x).
The Theorem also gives us the bound ||v||10,10 <C(||u0||Ḣ1). We define

(NLS′)

i∂tu+4u = |u|4v

ut=0 = u0.
(4.2.6)

Notice that the last factor in the nonlinearity is our fixed solution v. We run a fixed point argument for (NLS′) in
the ball B = {u : ||u||Xq(I) < 2||u0||Ḣ1}∩{u : ||u||L∞

t Ḃ1
2,q(I×R3) < 2||u0||Ḣ1} where I = [0,T ) is an interval with

endpoint to be chosen later. We recall Γu = eit4uo− i
t∫

0
ei(t−s)4|u(s)|4v(s)ds. By Lemma (2.1.8) and Lemma

4.1.1, it suffices to show that Γ maps {u : ||u||Xq(I) < 2||u0||Ḣ1} to itself. From Prop. 3.2.3,

||Γu||Xq(I) ≤ ||eit4u0||Xq(I)+ ||
∫ t

0
ei(t−s)4(|u|4v)ds||Xq(I)

≤ ||u0||Ḣ1 + ||v||L10
t L10

x (I×R3)||u||
4
Xq(I)

≤ ||u0||Ḣ1 + ||v||L10
t L10

x (I×R3)16||u0||3Ḣ1

Since ||v||L10
t L10

x (I×R3) < ∞, we can choose I to be small enough so that ||v||L10
t L10

x (I×R3) <
1

32||u0||3Ḣ1
. Then

||Γu||Xq(I) ≤
3
2
||u0||Ḣ1 , (4.2.7)

and we see Γ : Xq(I)→ Xq(I).

We now show that Γ is a contraction on B. Consider u1,u2 ∈ B. Since Γu and Γv have the same linear terms,

‖Γu1−Γu2‖Xq = ||
t∫

0

ei(t−s)4 (|u1|4v−|u2|4v
)
(s)ds||Xq . (4.2.8)

Using Lemma 2.3.1, the algebraic inequality ||u1|4v−|u2|4v| ≤ |u1−u2||v|
(
|u1|3−|u2|3

)
and Prop. 3.2.2, we

have
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‖Γu−Γv‖Xq ≤ ‖u− v‖Xq ‖v‖L10
t L10

x (I×R3)

(
‖u1‖3

Xq +‖u2‖3
Xq

)
≤ ‖u1−u2‖Xq

1
32||u0||3Ḣ1

(
(2‖u0‖Ḣ1)

3 +(2‖u0‖Ḣ1)
3
)

=
1
2
‖u1−u2‖Xq .

We obtain a solution u(t,x) to (NLS’) on I with ||u||Xq(I) ≤ 2||u0||Ḣ1 . Since ||v||L10
t L10

x (R×R3) is finite and
||u(t,x)||Lt

∞Ḣ1 ≤ ||u0||Ḣ1 , we can repeat this argument a finite number of times to get a global solution u(t,x) to
(NLS’), with ||u||Xq(R) <C(||u0||Ḣ1). But v is such a solution, so by uniqueness u = v. Therefore u(t,x) is in fact
a solution to (NLS).

By Lemma 3.2.5, the number of intervals of appropriate size is
(32)10||v||10

L10
t L10

x (R×R3)

||u0||30
Ḣ1

.

Summing over the intervals, we obtain

||u||Xq(R) ≤ ∑ ||u||Xq(Ik)

≤ 2||u0||Ḣ1

(32)10||v||10
L10

t L10
x (R×R3)

||u0||30
Ḣ1

≤
(32)11||v||10

L10
t L10

x (R×R3)

||u0||29
Ḣ1

.

From Theorem 4.2.1, we know that there is a constant η0 such that if ||w0||Ḃ1
2,q

< η0, then w0 evolves to a global
solution w(t,x) to Equation (1.1.1). We consider the solution w fixed in the following.

Let e = e(t,x) = |w+ ũ|4(w+ ũ)−|w|4w−|ũ|4ũ. If ũ is a solution to

( ˜NLS)

i∂t ũ+4ũ = |ũ|4ũ+ e

ũt=0 = v0 ∈ Ḣ1,
(4.2.9)

then u(t,x) = ũ(t,x)+w(t,x) is a solution to (NLS):

i∂tu+4u = (i∂t ũ+4ũ)+(i∂tw+4w)

= (|w+ ũ|4(w+ ũ)−|w|4w)+(|w|4w)

= |w+ ũ|4(w+ ũ)

= |u|4u.
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Thus, to show that (NLS) is globally well-posed for data described in Theorem 4.3.1, it suffices to show that
Equation (4.2.9) admits a global solution. We begin with an appropriate local theory for Equation (4.2.9), but
first a remark about continuity.

Remark 4.2.3. By modifying the proof of Lemma (2.1.8) appropriately, we see that Lemma (2.1.8) is true with

(NLS) replaced by ( ˜NLS), and changing the nonlinearity appropriately.

Lemma 4.2.4. For 2≤ q≤∞, there exists a constant C =C(||ũ0||Ḣ1) and a time T1 such that if ||w0||Ḃ1
2,q

< C̃ and

0 < T < T1 then v0 evolves to a unique solution ũ(t,x) to (4.2.9) which lies in Xq([0,T ))∩C0
t Ḃ1

2,q([0,T )×R3)

for 2≤ q < ∞ and in X∞([0,T ))∩L∞
t Ḃ1

2,q([0,T )×R3) for q = ∞. Furthermore, ||ũ||Xq([0,T )) < 2||ũ0||Ḣ1 .

Proof. From Theorem 4.2.1, we see that there exists C1 such that if ||w0||Ḃ1
2,q

<C1, we can ensure a global

solution w(t,x) to (NLS), evolving from w0. Let w0 be such that ||w0||Ḃ1
2,q

< min
{

C1,
1
4 ||ũ0||Ḣ1

}
. Then Theorem

4.2.1 guarantees that there exists global solution w(t,x) to (NLS), evolving from w0, with
‖w‖Xq([0,∞)) <

1
2 ‖ũ0‖Ḣ1 . We take this solution to be fixed. Let I = [0,T ), where we will decide on T later in the

proof. We run a fixed-point argument in the ball
B = {u : ||ũ||Xq(I) < 2||ũ0||Ḣ1}∩{u : ||u||L∞

t Ḃ1
2,q(I×R3) < 2||ũ0||Ḣ1}. Let

Γ̃ũ = eit4ũo− i
t∫

T0

ei(t−s)4 (|ũ(s)+w(s)|4(ũ(s)+w(s))−|w(s)|4w(s)
)

ds. (4.2.10)

From Remark 4.2.3 and Lemma (2.1.8), it suffices to show that Γ̃ maps {u : ||ũ||Xq(I) < 2||ũ0||Ḣ1} to itself.

For ũ ∈ B, since ‖ũ‖Xq(I) =

(
∑
N

Nq ‖ũN‖q
V 2
4(I)

) 1
q

< 2||ũ0||Ḣ1 , and ‖w‖Xq(I) <
1
2 ||ũ0||Ḣ1 , there exists a dyadic

frequency M such that the projections of ũ and w onto frequencies greater than M, ũhigh := ũN≥M and
whigh := wN≥M satisfy

∥∥ũhigh
∥∥

Xq(I) ≤ min
{

1
4
,

1
4
‖ũ0‖Ḣ1

}
∥∥whigh

∥∥
Xq(I) ≤ min

{
1
4
,

1
4
‖ũ0‖Ḣ1

}
.

We let ũlow := ũ− ũhigh and wlow = w−whigh. Then since these functions lack high frequencies, we see from
Lemma 2.1.9,

‖ulow‖L10
t L10

x (I) . ‖ũlow‖X2(I) =

(
∑
N

N2 ‖ũlow‖2
V 2
4

) 1
2

< ∞,

‖wlow‖L10
t L10

x (I) . ‖wlow‖X2(I) =

(
∑
N

N2 ‖wlow‖2
V 2
4

) 1
2

< ∞.
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Shrinking the time interval if needed, we let T > 0 be such that

‖ulow‖L10
t L10

x (I) <
1

(45)(24)‖ũ0‖3
Ḣ1

‖wlow‖L10
t L10

x (I) <
1

(45)(24)‖ũ0‖3
Ḣ1

.

We must show that Γ̃ maps the ball B into itself. By the triangle inequality and Lemma 2.2.1:

∥∥Γ̃ũ
∥∥

Xq(I) ≤ ‖ũo‖Ḃ1
2,q

+

∥∥∥∥∥∥
∫

s<t

ei(t−s)4(|ũ(s)+w(s)|.4(ũ(s)+w(s))−|w(s)|4w(s))ds

∥∥∥∥∥∥
Xq(I)

(4.2.11)

From Definition 1.1.3 and Equation (1.1.6), ‖ũo‖Ḃ1
2,q
≤ ‖ũo‖Ḃ1

2,2
∼ ‖ũ0‖Ḣ1 .

We decompose ũ = ũlow + ũhigh and w = wlow +whigh and expand the integrand into 45−25 terms. Each term in
the integrand can be written as ei(t−s)4 f1 f2 f3 f4 f5, where fi ∈ {ũlow, ũhigh,wlow,whigh}. We apply the triangle
inequality to the second term on the right-hand side of Equation (4.2.11) and consider each of the 45−25 terms,∥∥∥∥ ∫

s<t
ei(t−s)4 f1 f2 f3 f4 f5ds

∥∥∥∥
Xq(I)

. For the terms where fi ∈ {ũhigh,whigh} for all i, by Prop. 3.2.2, Equation

(4.2.11) and the embedding Xq ⊂ X∞ from Lemma 2.1.8,

∥∥∥∥∥∥
∫

s<t

ei(t−s)4 f1 f2 f3 f4 f5ds

∥∥∥∥∥∥
Xq(I)

≤ ‖ f1‖X∞(I) ‖ f2‖X∞(I) ‖ f3‖X∞(I) ‖ f4‖Xq(I) ‖ f5‖Xq(I)

≤ ‖ f1‖Xq(I) ‖ f2‖Xq(I) ‖ f3‖Xq(I) ‖ f4‖Xq(I) ‖ f5‖Xq(I)

≤ 1
45 ‖ũ0‖Ḣ1 .

Every other term has at least one fi ∈ {ũlow,wlow}. Without loss of generality, we will assume f5 ∈ {ũlow,wlow}.
Then by Prop. 3.2.3, Equation (4.2.11) and Lemma 2.1.8,

∥∥∥∥∥∥
∫

s<t

ei(t−s)4 f1 f2 f3 f4 f5ds

∥∥∥∥∥∥
Xq(I)

≤ ‖ f1‖X∞(I) ‖ f2‖X∞(I) ‖ f3‖Xq(I) ‖ f4‖Xq(I) ‖ f5‖10,10

≤ ‖ f1‖Xq(I) ‖ f2‖Xq(I) ‖ f3‖Xq(I) ‖ f4‖Xq(I) ‖ f5‖10,10

≤ (2‖ũ0‖Ḣ1)
4 1

(45)(24)‖ũ0‖3
Ḣ1

≤ 1
45 ‖ũ0‖Ḣ1 .

We have shown

∥∥Γ̃ũ
∥∥

Xq(I) ≤ ‖ũo‖Ḃ1
2,q

+
45−25

45 ‖ũ0‖Ḣ1 < 2‖ũ0‖Ḣ1 . (4.2.12)

Using Lemma 2.3.1, the algebraic inequality ||u|4u−|v|4v| ≤ |u− v|
(
|u|4−|v|4

)
and the decomposition

ũ = ũlow + ũhigh, ṽ = ṽlow + ṽhigh, where the high and low projections satisfy the same bounds as in Equation
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(4.2.11) and Equation (4.2.11), a similar argument to that above shows that Γ̃ is a contraction mapping on B:

∥∥Γ̃ũ− Γ̃ṽ
∥∥

Xq(I) ≤
1
2
||u− v||Xq(I). (4.2.13)

Remark 4.2.5. The local theory, similar to that in [1] tells us that in particular, if ||ũ||Xq(I) is finite on some time

interval I, then the solution can be extended beyond I for some time.

From Theorem 4.2.2, we see that if u0 ∈ Ḣ1 evolves under (NLS), the solution u is bounded in Xq for any
2≤ q≤ ∞. For u0 ∈ Ḣ1 evolving under the flow of ( ˜NLS), we require similar bounds and in fact we can use a
stability argument to obtain these bounds.

Theorem 4.2.6. (Stability) Suppose we have a solution ũ to the equation

( ˜NLS)

i∂t ũ+4ũ = |ũ|4ũ+ e

ũt=0 = v0 ∈ Ḣ1
(4.2.14)

on the time interval I = [T0, T̄ ) in the sense that for all 0 < T < T̄ , ũ solves (4.2.14) and

ũ ∈ Xq([T0,T ))∩L∞
t Ḃ1

2,q([T0,T )× (R3)).

Let v(t,x) be the unique solution to (NLS) with initial data v0. There exists an ε0 = ε0(||v||10,10, ||v0||Ḣ1) such

that for all 0 < ε < ε0, if

||
t∫

T0

ei(t−s)4e(s)ds||Xq(I) ≤ 30ε
5 +480||v− ũ||4Xq(I)ε +480||v||3Xq(I)||v||L10

t L10
x (R×R3)ε, (4.2.15)

then ũ satisfies:

ũ ∈ L∞
t Ḃ1

2,q(I×R3)

||v− ũ||Xq(I) ≤ 1

||ũ||Xq(I) ≤ 1+ ||v||Xq(I)

Proof. Let I = [T0,T1]. We begin by assuming that T1 is small enough so that ||v||L10
t L10

x (I×R3) < δ for some δ to
be chosen later.

Since v solves (NLS) and ũ solves ( ˜NLS), we have

v(t,x) = eit4v0− i
t∫

T0

ei(t−s)4(|v|4v)(s)ds (4.2.16)

ũ(t,x) = eit4v0− i
t∫

T0

ei(t−s)4(|ũ|4ũ+ e)(s)ds,
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and so

||v− ũ||Xq(I) ≤ ||
t∫

T0

ei(t−s)4((|v|4v)− (|ũ|4ũ))ds||Xq(I)+ ||
t∫

T0

ei(t−s)4e(s)||Xq(I).

By the algebraic inequality

||v|4v−|ũ|4ũ| ≤ |v− ũ|
(
|v|4 + |ũ|4

)
≤ |v− ũ|

(
|v|4 + |v− ũ+ v|4

)
≤ |v− ũ|

(
|v|4 +16|v− ũ|4 +16|v|4

)
≤ 17|v− ũ||v|4 +16|v− ũ|5,

Prop. 3.2.2 and Prop. 3.2.3,

||
t∫

T0

ei(t−s)4((|v|4v)− (|ũ|4ũ))ds||Xq ≤ 17||v− ũ||Xq ||v||3Xq ||v||L10
t L10

x
+16||v− ũ||5Xq . (4.2.17)

By Equation (4.2.15) and Equation (4.2.17), we have

||v− ũ||Xq ≤ 17||v− ũ||Xq ||v||3Xq ||v||L10
t L10

x
+16||v− ũ||5Xq +30ε

5 +480||v− ũ||4Xqε +480||v||3Xq ||v||L10
t L10

x
ε.

(4.2.18)

Let A(T ) = ||(v− ũ)||Xq([T0,T ]). By Lemma 4.2.2, we have that ||v||Xq(I) ≤C(||v||L10
t L10

x (R×R3), ||u0||Ḣ1). We have
shown:

A(T )≤ 17C3
δA(T )+16A(T )5 +30ε

5 +480A(T )4
ε +480C3

δε. (4.2.19)

If we choose δ so that 480C3δ = 1
100 and ε small enough (we will choose an explicit ε soon), a standard

continuity argument shows that A(T1)< ε . In other words, ||v− ũ||Xq([T0,T1]) < ε .

Now we remove the smallness assumption above. We fix δ satisfying 480C3δ = 1
100 . We decompose I into

intervals Ik where on each Ik, ||v||L10
t L10

x (Ik×R3) < δ . From Lemma 3.2.5, there are
||v||10

L10
t L10

x (I×R3)

δ 10 =: n many
intervals.

We use the triangle inequality and seek to bound each term in the sum:

||v− ũ||Xq(I) ≤∑
k
||v− ũ||Xq(Ik).

Let Ik = [Tk−1,Tk], Ak(T ) = ||v− ũ||Xq([Tk−1,T ]) and Ak = ||v− ũ||Xq([Tk−1,Tk]). For our first interval I1, the above
shows that A1 ≤ ε . Let’s consider our second interval I2. By Equation (4.2.16) and our previous analysis ,
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A2(T ) = ||v− ũ||Xq([T1,T ])

≤ ||ei(T−T1)4(v(T1)− ũ(T1))||Xq
([T1 ,T ])

+ ||
t∫

T1

ei(t−s)(|v|4v−|ũ|4ũ− e)(s)ds||Xq([T1,T ])

≤ ||ei(T−T1)4(v(T1)− ũ(T1))||Xq
([T1 ,T ])

+17C3
δA2(T )+16A2(T )5 +30ε

5 +480A2(T )4
ε +480C3

δε,

where the last line follows from a similar argument as above. Notice the linear terms differ for this interval. Let
us consider the first term. By Lemma 2.2.1,

||ei(T−T1)4(v(T1)− ũ(T1))||Xq([T1,T ]) = ||v(T1)− ũ(T1)||Ḃ1
2,q

≤ ||v(t)− ũ(t)||L∞
t Ḃ1

2,q([T0,T1])

≤ ||v(t)− ũ(t)||Xq([T0,T1]).

We have shown that this is bounded by ε , so by Equations (4.2.20) and (4.2.20), we have

A2(T )≤ ε +17C3
δA2(T )+16A2(T )5 +30ε

5 +480A2(T )4
ε +480C3

δε. (4.2.20)

Taking ε small enough, a continuity argument shows that A2 < 10ε . We require a smaller ε in this second
interval, as the linear term is not zero. In fact, for each subsequent interval, we will need an exponentially
smaller interval. For this interval, ε < 1

100 will suffice, but for our choice to work on every subinterval, we take

ε < 10−n, where we recall n =
||v||10

L10
t L10

x (I×R3)

δ 10 . Note that δ being fixed determines n and this in turn determines
our choice for ε .

We proceed inductively. For k ≤ n, we assume Am ≤ 10(m−1)ε for m < k and are able to use this assumption to
show that Ak ≤ 10k−1ε by a continuity argument. Indeed, by Lemma 2.2.1,

Ak(T ) (4.2.21)

≤ ||ei(T−T1)4(v(Tk−1)− ũ(Tk−1))||Xq([Tk−1,T ])+17C3
δAk(T )+16Ak(T )5 +30ε

5 +480Ak(T )4
ε +480C3

δε

≤ ||v(t)− ũ(t)||Xq([Tk−2,Tk−1])+17C3
δAk(T )+16Ak(T )5 +30ε

5 +480Ak(T )4
ε +480C3

δε

≤ 10k−2
ε +17C3

δAk(T )+16Ak(T )5 +30ε
5 +480Ak(T )4

ε +480C3
δε

A standard continuity argument then shows that Ak ≤ 10k−1ε . We now show the steps of this process in detail.
By Lemma 4.1.1, there exists T > Tk−1 such that Ak(T )< 10k−1ε . For T ∈ (Tk−1,Tk], we show that
Ak(T )< 10k−1ε implies that Ak(T )< 1

2 10k−1ε , so that by continuity, Ak(T +η)< 10k−1ε for some η > 0. This
implies that the set {T : Ak(T )< 10k−1ε} is both open and closed in (Tk−1,Tk], and hence must be the entire
interval. This will prove that Ak < 10k−1ε .
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Assume Ak(T )< 10k−1ε and 10nε < 1
10 . We bound each term on the RHS of Equation (4.2.21).

17C3
δAk(T )≤

1
100

Ak(T )<
1

100
10k−1

ε. (4.2.22)

By assumption, Ak(T )< 10k−1ε < 10nε < 1
10 .

16Ak(T )5 < (16)(
1

10
)4Ak(T )<

1
100

10k−1
ε. (4.2.23)

480Ak(T )4
ε ≤ 480(

1
10

)4
ε <

1
100

10k−1
ε. (4.2.24)

Certainly 30ε5 < 1
100 10k−1ε and 480C3δε < 1

100 ε . Thus, by Equations (4.2.21), (4.2.22), (4.2.23) and (4.2.24),
Ak(T )< 1

2 10k−1ε . This guarantees Ak < 10k−1ε by continuity.

By Corollary 3.2.5, 10n = 10
||v||10

10,10
δ10 = 10||v||

10
10,10||v||Xq(R)(48000)10

≤ 10

||v||310
10,1010710

||v0 ||
29
Ḣ1 . Thus we require

ε < 10
−
||v||310

10,1010710

||v0 ||
29
Ḣ1

−1
. Thus, if we choose ε0 = 10

−
||v||310

10,1010710

||v0 ||
29
Ḣ1

−1
, then if ε < ε0,

||v− ũ||Xq(I) ≤
n

∑
k=1
||v− ũ||Xq(Ik) ≤

n

∑
k=1

10k−1
ε ≤ 10n

ε ≤ 1,

||ũ||Xq(I) ≤ ||v− ũ||Xq(I)+ ||v||Xq(I) ≤ 1+ ||v||Xq(I),

and by Lemma 2.2.1, ||ũ||L∞
t Ḃ1

2,∞(I×R3) ≤ ||ũ||Xq(I) ≤ 1+ ||v||Xq(I).

4.3 Proof of Global Well-Posedness

For ease of reading, we restate Theorem 1.3.1 now.

Theorem 4.3.1. Let u0 ∈ Ḃ1
2,q with 2≤ q≤ ∞ and u0 = v0 +w0, v0 ∈ Ḣ1 and w0 ∈ Ḃ1

2,q with

||w0||Ḃ1
2,q

< min
(

1
2 ,ε0

(
||v||L10

t L10
x (R×R3), ||v0||Ḣ1

))
, where v is the unique solution to Equation (1.1.1) emerging

from initial data v0 ∈ Ḣ1. There exists a unique global solution u(t,x) to Equation (1.1.1) which satisfies:

For 2≤ q < ∞,

u ∈C0
t Ḃ1

2,q(R+×R3)∩Xq(R+),

and u scatters in Ḃ1
2,q. For q = ∞,
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u ∈ L∞
t Ḃ1

2,∞(R+×R3)∩X∞(R+)

and u converges weakly to u0 in Ḃ1
2,∞ as t→ 0.

In this section, we prove that data of the form described in Theorem 4.3.1 evolve globally under the evolution of
(NLS).

Proof. Let w0 satisfy ||w0||Ḃ1
2,q

< min{C(||ũ0||Ḣ1),η0,
ε

2}, where η0 is given in Theorem 4.2.1 and C(||ũ0||Ḣ1) is
given in Lemma 4.2.4. In particular, by Theorem 4.2.1, since ||w0||Ḃ1

2,q
< η0, w0 evolves globally under (NLS) to

a global solution w(t,x), which satisfies the bound ||w||Xq[0,∞) < 2min{C(||ũ0||Ḣ1),η0,
ε

2}.

Recall, from Section 4.2, if e = e(t,x) = |w+ ũ|4(w+ ũ)−|w|4w−|ũ|4ũ, and ũ is a solution to

( ˜NLS)

i∂t ũ+4ũ = |ũ|4ũ+ e

ũt=0 = v0 ∈ Ḣ1,
(4.3.1)

then u(t,x) = ũ(t,x)+w(t,x) is a solution to (NLS).

Lemma 4.2.4 tells us that since ||w0||Ḃ1
2,q

<C(||ũ0||Ḣ1), we have a local solution to ( ˜NLS). From the local theory,
it follows that there is a maximal time of existence for this solution, I. We assume that I is finite to obtain a
contradiction. If we show that the error term e satisfies the conditions for Theorem 4.2.6, then Theorem 4.2.6
tells us that ||ũ||Xq(I) is bounded and thus from our local theory again, we know we may extend I for some
amount of time and this is a contradiction. Indeed, the error e satisfies the requirements. From Definition 2.1.7,
Lemma 2.1.3,

||
t∫

T0

ei(t−s)4e(s)ds||Xq(I) ≤

∑
N

Nq||
t∫

T0

ei(t−s)4(|w+ ũ|4(w+ ũ)−|w|4w−|ũ|4ũ)Nds||q
V 2
4

 1
q

≤

∑
N

t∫
T0

ei(t−s)4(|w+ ũ|4(w+ ũ)−|w|4w−|ũ|4ũ)Nds||U2
4

 1
q

.

By the series of algebraic inequalities,

∣∣∣|w+ ũ|4 (w+ ũ)−|w|4 w−|ũ|4 ũ
∣∣∣ ≤ 30 |w|5 +30 |ũ|4 |w|

≤ 30 |w|5 +30(|ũ− v|+ |v|)4 |w|

≤ 30 |w|5 +30
(

16 |ũ− v|4 +16 |v|4
)
|w|

= 30 |w|5 +480 |ũ− v|4 |w|+480 |v|4 |w| ,
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Lemma 3.2.2 and Lemma 3.2.3, we obtain

||
t∫

T0

ei(t−s)4e(s)ds||Xq(I) ≤ 30‖w‖5
Xq(I)+480‖ũ− v‖4

Xq(I) ‖w‖Xq(I)+480‖v‖3
Xq(I) ‖w‖Xq(I) ‖v‖L10

t L10
x (I×R3) .

Since ||w0||Ḃ1
2,q

< ε

2 , we have ||w||Xq(I) < ε and so

||
t∫

0

ei(t−s)4e(s)ds||Xq(I) ≤ 30ε
5 +480‖ũ− v‖4

Xq(I) ε +480‖v‖3
Xq(I) ‖v‖L10

t L10
x (I×R3) ε.

We reach our desired contraction and conclude ũ solves (NLS) on I = [0,∞). Since ũ evolves globally under
( ˜NLS), u evolves globally under (NLS).

4.4 Scattering

In this section, we prove that the solutions found scatter when q < ∞. There can be no scattering for q = ∞.
Recall from Definition 1.1.5, that it suffices to show

lim
t→+∞

||u(t)− eit4u+||Ḃ1
2,q(R3) = 0. (4.4.1)

Since the linear operator is unitary, it suffices to show

lim
t→+∞

||e−it4u(t)−u+||Ḃ1
2,q(R3) = 0. (4.4.2)

If we define u+ = u0− i
∞∫
0

e−is4 (|u|4u
)
(s)ds, and recall from Duhamel’s formula (1.1.9) that

e−it4u(t) = u0− i
t∫

0

e−is4 (|u|4u
)
(s)ds, (4.4.3)

then

||e−it4u(t)−u+||Ḃ1
2,q(R3) = ||

∞∫
t

e−is4 (|u|4u
)
(s)ds||Ḃ1

2,q
, (4.4.4)

and it suffices to show that

lim
t→∞
||

∞∫
t

e−is4 (|u|4u
)
(s)ds||Ḃ1

2,q
= 0. (4.4.5)

Before we proceed, let us pause to recall how scattering is shown when u0 ∈ Ḣ1 (the case of u0 ∈ L2, etc. is
similar). In this case, the space where the local theory is proved is Ṡ 1(I), where
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||u||Ṡ 0(I) = sup
(q,r)

(
∑
N
||PNu||2Lq

t Lr
x(I×R3)

)
, (4.4.6)

the supremum taken over all pairs (q,r) of admissible exponents, and

||u||Ṡ 1(I) = ||∇u||Ṡ 0(I). (4.4.7)

Let u be the solution that evolves from u0. If ||u||Ṡ 1([0,t)) is bounded independently of t, then ||u||Ṡ 1([0,∞)) < ∞.

It can then be shown that ||
∞∫
t

e−is4 (|u|4u
)
(s)ds||Ḣ1 < ||u||5

Ṡ 1([t,∞)
. It is clear now that as t approaches infinity,

the right side vanishes. Thus, scattering follows almost directly from bounds on the local-theory space Ṡ 1(I).

Let us now return to the case u0 ∈ Ḃ1
2,q. If we try to prove scattering in the analogous way, we fail. From

Theorem 4.2.6 and Theorem 4.2.1, we see that ||u||Xq([0,t) is bounded independently of t. Indeed,

||u||Xq(I) ≤ ||ũ||Xq(I)+ ||w||Xq(I) ≤
1

10
+ ||v||Xq(I)+2||w0||Ḃ1

2,q
.

This implies ||u||Xq[0,∞) is also finite. However, if we examine Definition 2.1.7, we see that (because of the
essential supremum) ||u||Xq([t,∞)) <C does not imply lim

t→∞
||u||Xq([t,∞)) = 0. We must work harder. Furthermore, it

is possible to show that ||
t∫

0
e−is4 (|u|4u

)
(s)ds||Ḃ1

2,q
is bounded independently of t, however this is not sufficient

to show scattering, as the integral may not converge when we take t to infinity. From Theorem 4.2.6, we see that
||u− v||Xq[0,t) is bounded independently of t. v solves (NLS) with initial data v0 ∈ Ḣ1 and we have that
||v||L10

t L10
x (R×R3) is bounded by Theorem 1.2.1. In fact, we can show for every N that ||(u− v)N ||

L
10
3

t ×L
10
3

x ([0,t)×R3)

is bounded independently of t. On the surface, this looks like it will help us show the decay in time we are
looking for, since u will inherit the decay of v in time, however this is also insufficient, as the time of decay
might increase as the frequency increases.

Instead, we will show

||
∞∫

t

e−is4 (|u|4u
)
(s)ds||Ḃ1

2,q
≤

(
∑
N

Nq||
(
|u|4u

)
N ||

q
L1

t L2
x [t,∞)×R3)

) 1
q

≤ ||u||5Xq[t,∞). (4.4.8)

The first inequality is just an application of Minkowski’s Integral Inequality. The second inequality will take
more work and will be proved in a similar manner to the multilinear estimates in Chapter 3. Inequality (4.4.8)

suffices to show scattering. Indeed, since ||u||Xq([t,∞)) < ∞, we have that
(

∑
N

Nq||
(
|u|4u

)
N ||

q
L1

t L2
x [t,∞)×R3)

) 1
q

< ∞.

Thus lim
t→∞

(
∑
N

Nq||
(
|u|4u

)
N ||

q
L1

t L2
x [t,∞)×R3)

) 1
q

= 0 and this implies ||
∞∫
t

e−is4 (|u|4u
)
(s)ds||Ḃ1

2,q
→ 0. This will

conclude the proof of Therem 4.3.1. We note that this Lemma could appear in Chapter 3, but it was placed here
to include the context with the lemma.

Lemma 4.4.1. For u ∈ Xq(I), for the time interval I = [t0, t1),

(
∑
N

Nq||
(
|u|4u

)
N ||

q
L1

t L2
x(I×R3)

) 1
q

≤ ||u||5Xq(I). (4.4.9)
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Proof. The proof is similar to the proofs in Chapter 3. We use duality and frequency decomposition to reach our
desired result. We break the proof up into the cases q = ∞ and q = 2 and then interpolate between these results.
We drop the interval for ease of reading and begin with q = ∞.

q = ∞:

Using the duality || f ||L1
t L2

x(I×R3) = sup
||v||L∞

t L2x (I×R3)=1

∣∣∣∣∣ ∫I×R3
( f v)dxdt

∣∣∣∣∣ , decomposing each function into its

Littlewood-Paley projections as in Prop. 3.1.1, Prop. 3.1.2, etc., and Plancherel’s Theorem, we have

sup
N

(
N||
(
|u|4u

)
N ||L∞

t L2
x(I×R3)

)
= sup

N

 sup
||v||L∞

t L2x (I×R3)=1
N

∣∣∣∣∣∣
∫

I×R3

|u|4uvNdxdt

∣∣∣∣∣∣


≤ sup
N

 sup
||v||L∞

t L2x (I×R3)=1
N ∑

λi

∣∣∣∣∣∣
∫

I×R3

u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5
vNdxdt

∣∣∣∣∣∣
 ,

where the sum is over all dyadic numbers λi, i = 1,2,3,4,5, ui denotes either u or ū and ui,λi = (ui)λi
. For the

sake of brevity, we will only show the cases where N > λi for i = 1,2,3,4,5 and where N < λi for i = 1,2,3,4,5.

Case 1 : N < λi, i = 1,2,3,4,5. Ie; we consider the sum

∑
1
= ∑

N<λ1<∞

∑
λ1<λ2<∞

∑
λ2<λ3<∞

∑
λ3<λ4∼λ5<∞

. (4.4.10)

By Hölder’s inequality, Proposition 2.2.2 and Lemma 2.1.3,

S1 := sup
N

 sup
||v||L∞

t L2x (I×R3)=1
N ∑

1

∣∣∣∣∣∣
∫

I×R3

u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5
vNdxdt

∣∣∣∣∣∣


≤ sup
N

 sup
||v||L∞

t L2x (I×R3)=1
N ∑

1

5

∏
i=1
||ui,λi ||5,10||vN ||∞,2


≤ sup

N

 sup
||v||L∞

t L2x (I×R3)=1
N ∑

1

5

∏
i=1

λ
4
5

i ||ui,λi ||U5
4
||vN ||∞,2


≤ sup

N

 sup
||vN ||L∞

t L2x (I×R3)=1
N ∑

1

5

∏
i=1

λ
− 1

5
i

(
λi||ui,λi ||V 2

4

)
||vN ||∞,2



||vN ||∞,2 ≤ ||v||∞,2, so by Definition 2.1.7, we have
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S1 ≤ ||u||5X∞ sup
N

 sup
||v||V 2

4
=1
||v||V 2

4
N ∑

1
(λ1λ2λ3λ4λ5)

− 1
5


≤ ||u||5X∞ sup

N

(
N ∑

1
(λ1λ2λ3λ4λ5)

− 1
5

)
.

We sum in order, λ5,λ4,λ3,λ2,λ1, and we obtain

S1 . ||u||5X∞ sup
N

(
NN−1)

= ||u||5X∞ .

Case 2 : N > λi, i = 1,2,3,4 (and N ∼ λ5. I.e. we consider the sum

∑
4
= ∑
−∞<λ4<N∼λ5

∑
−∞<λ3<λ4

∑
−∞<λ2<λ3

∑
−∞<λ1<λ2

. (4.4.11)

By Hölder’s inequality, Proposition 2.2.2, Proposition 2.2.4 and Lemma 2.1.3,

S4 := sup
N

 sup
||v||L∞

t L2x (I×R3)=1
N ∑

4

∣∣∣∣∣∣
∫

I×R3

u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5
vNdxdt

∣∣∣∣∣∣


≤ sup
N

 sup
||v||L∞

t L2x (I×R3)=1
N ∑

4
||u1,λ1 ||6,∞||u2,λ2 ||6,∞||u3,λ3 ||6,∞||u4,λ4u5,λ5

||2,2||vN ||∞,2


≤ sup

N

 sup
||v||L∞

t L2x (I×R3)=1
N ∑

4
(λ1λ2λ3)

7
6 λ4λ

− 1
2

5 ||u1,λ1 ||U6
4
||u2,λ2 ||U6

4
||u3,λ3 ||U6

4
||u4,λ4 ||V 2

4
||u5,λ5

||V 2
4
||vN ||∞,2


≤ sup

N

 sup
||vN ||L∞

t L2x (I×R3)=1
N||vN ||∞,2 ∑

4
(λ1λ2λ3)

1
6 λ
− 3

2
5

5

∏
i=1

(
λi||ui,λi ||V 2

4

)

We recall ||vN ||∞,2 ≤ ||v||∞,2. Taking the supremum over λi||ui,λi ||V 2
4

, for i = 1,2,3,4,5, and pulling it out of the
sum, by Definition 2.1.7, we have

S4 ≤ ||u||5X∞ sup
N

 sup
||v||V 2

4
=1
||v||V 2

4
N ∑

1
(λ1λ2λ3λ4λ5)

− 1
5


≤ ||u||5X∞ sup

N

(
N ∑

1
(λ1λ2λ3λ4λ5)

− 1
5

)
.
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We sum in order, λ1,λ2,λ3,λ4,λ5, and we obtain

S4 . ||u||5X∞ sup
N

(
NN−1)

= ||u||5X∞ .

q = 2:

Using the duality
(

∑
N

N2|| fN ||2L1
t L2

x(I×R3)

) 1
2
= sup
||v||Z(I)=1

∣∣∣∣∣ ∫I×R3
( f v)dxdt

∣∣∣∣∣ , where ||v||Z(I) =
(

∑
N

N−2||vN ||2∞,2

) 1
2
,

decomposing the each function into its Littlewood-Paley projections as in Prop. 3.1.1, Prop. 3.1.2, etc., and
Plancherel’s Theorem, we have

(
∑
N

N2||
(
|u|4u

)
N ||

2
L∞

t L2
x(I×R3)

) 1
2

= sup
||v||Z(I)=1

∣∣∣∣∣∣
∫

I×R3

|u|4uvNdxdt

∣∣∣∣∣∣
≤ sup

||v||Z(I)=1
∑
λi

∣∣∣∣∣∣
∫

I×R3

u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5
vNdxdt

∣∣∣∣∣∣ ,
where the sum is over all dyadic numbers λi, i = 1,2,3,4,5, ui denotes either u or ū and ui,λi = (ui)λi

. For the
sake of brevity, we will only show the cases where N > λi for i = 1,2,3,4,5 and where N < λi for i = 1,2,3,4,5.

Case 1 : N < λi, i = 1,2,3,4,5. I.e. we consider the sum

∑
1
= ∑
−∞<λ4∼λ5<∞

∑
−∞<λ3<λ5

∑
−∞<λ2<λ3

∑
−∞<λ1<λ2

∑
−∞<N<λ1

. (4.4.12)

By Hölder’s inequality, Proposition 2.2.2, Proposition 2.2.4 and Lemma 2.1.3,

S1 := sup
||v||Z(I)=1

∑
1

∣∣∣∣∣∣
∫

I×R3

u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5
vNdxdt

∣∣∣∣∣∣
≤ sup

||v||Z(I)=1
∑
1
||vN ||∞,2||u5,λ5

u1,λ1 ||2,2||u2,λ2 ||6,∞||u3,λ3 ||6,∞||u4,λ4 ||6,∞

≤ sup
||v||Z(I)=1

∑
1
||vN ||∞,2λ

− 1
2

5 λ1||u5,λ5
||V 2
4
||u1,λ1 ||V 2

4
(λ2λ3λ4)

7
6 ||u2,λ2 ||U6

4
||u3,λ3 ||U6

4
||u4,λ4 ||U6

4

≤ sup
||v||Z(I)=1

∑
1
||vN ||∞,2

(
λ1||u1,λ1 ||V 2

4

)(
λ2||u2,λ2 ||V 2

4

)(
λ3||u3,λ3 ||V 2

4

)
Nλ
− 3

2
5 (λ2λ3λ4)

1
6 ||u4,λ4 ||V 2

4
||u5,λ5

||V 2
4
.

Taking supremums out of the sum, by Definition 2.1.7, we have
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S1 ≤ ||u||3X∞ sup
||v||Z(I)=1

sup
N

(
N−1||vN ||∞,2

)
∑
1

Nλ
− 3

2
5 (λ2λ3λ4)

1
6 ||u4,λ4 ||V 2

4
||u5,λ5

||V 2
4
.

We sum in order, N,λ1,λ2,λ3. The embedding `2 ⊂ `∞ then gives us

S1 ≤ ||u||3X∞ sup
||v||Z(I)=1

(
∑
N

N−2||vN ||2∞,2

) 1
2

∑
−∞<λ4∼λ5<∞

λ5λ4||u4,λ4 ||V 2
4
||u5,λ5

||V 2
4
.

Cauchy-Schwarz then gives us

S1 . ||u||3X∞ ||u||2X2 .

Case 2 : N > λi, i = 1,2,3,4 (and N ∼ λ5). Ie; we consider the sum

∑
4
= ∑
−∞<N∼λ5<∞

∑
−∞<λ4<N

∑
−∞<λ3<λ4

∑
−∞<λ2<λ3

∑
−∞<λ1<λ2

. (4.4.13)

By Hölder’s inequality, Proposition 2.2.2, Proposition 2.2.4 and Lemma 2.1.3,

S4 := sup
||v||Z(I)=1

∑
4

∣∣∣∣∣∣
∫

I×R3

u1,λ1u2,λ2u3,λ3u4,λ4u5,λ5
vNdxdt

∣∣∣∣∣∣
≤ sup

||v||Z(I)=1
∑
4
||vN ||∞,2||u5,λ5

u2,λ2 ||2,2||u1,λ1 ||6,∞||u3,λ3 ||6,∞||u4,λ4 ||6,∞

≤ sup
||v||Z(I)=1

∑
4
||vN ||∞,2λ

− 1
2

5 λ2||u5,λ5
||V 2
4
||u1,λ1 ||V 2

4
(λ1λ3λ4)

7
6 ||u2,λ2 ||U6

4
||u3,λ3 ||U6

4
||u4,λ4 ||U6

4

≤ sup
||v||Z(I)=1

∑
4

(
λ1||u1,λ1 ||V 2

4

)(
λ2||u2,λ2 ||V 2

4

)(
λ3||u3,λ3 ||V 2

4

)(
λ4||u4,λ4 ||V 2

4

)
λ
− 3

2
5 (λ1λ3λ4)

1
6 ||u5,λ5

||V 2
4
||vN ||∞,2.

Taking supremums out of the sum, by Definition 2.1.7, we have

S4 ≤ ||u||4X∞ sup
||v||Z(I)=1

∑
4

λ
− 3

2
5 (λ1λ3λ4)

1
6 ||u5,λ5

||V 2
4
||vN ||∞,2.

We sum in order, λ1,λ2,λ3,λ4.

S4 ≤ ||u||4X∞ sup
||v||Z(I)=1

∑
−∞<N∼λ5<∞

λ5N−1||u5,λ5
||V 2
4
||vN ||∞,2.
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Cauchy-Schwarz then gives us

S4 . ||u||4X∞

(
∑

−∞<λ5<∞

λ
2
5 ||u5,λ5

||2V 2
4

) 1
2
(

∑
−∞<N<∞

N−2||vN ||2∞,2

) 1
2

.



Chapter 5

Wavelets and Profile Decomposition

In [28], Kenig outlines a procedure to prove global well-posedness and scattering for dispersive and wave
equations. We will talk more about this in Section 6. An important part of this procedure is proving an
appropriate profile decomposition. Profile decompositions measure the defect of compactness of embeddings.
For example, from Lemma 1.4.2 and Sobolev embedding, we have the energy-critical Strichartz inequality

||eit4 f ||L10
t L10

x (R×R3 . || f ||Ḣ1 .

However, the operator eit4 : Ḣ1→ L10
t L10

x is far from compact. There is a group of non-compact symmetries
consisting of space-translations, time-translations and scaling. Given a sequence { fn} in Ḣ1, we cannot extract a
convergent subsequence from {eit4 fn}, however if we apply an appropriate member of the group to each term,
we can collect ”bubbles of concentration” with an error going to zero in a Strichartz space. This is the essence of
the energy-critical profile decomposition given below.

Bahouri and GǴerard were the first to introduce a profile decomposition into the dispersive literature in the
context of wave equations in [26]. In [36], Keraani proves a profile decomposition for Ḣ1 solutions to the linear
Schrödinger Equation (1.4.2). A similar profile decomposition can be found in [10], which we state now for
d = 3.

Theorem 5.0.2. Let { fn}n≥1 be a sequence of functions bounded in Ḣ1(R3). Passing to a subsequence if

necessary, there exist J∗ ∈ {0,1, . . .}∪{∞}, functions {φ j}J∗
j=1 ⊂ Ḣ1(R3), {λ j

n} ⊂ (,∞), and {t j
n,x

j
n} ⊂ R×R3

such that for each finite 0≤ J ≤ J∗, we have the decomposition

fn =
J

∑
j=1

(λ j
n )
− 1

2 [eit j
n4φ

j](
x− x j

n

λ
j

n
)+wJ

n (5.0.1)

with the following properties:

lim
J→J∗

limsup
n→∞

||eit4wJ
n||L10

t,x(R×R3) = 0 (5.0.2)

lim
n→∞

[||∇ fn||22−
J

∑
j=1
||∇φ

j||22−||∇wJ
n||22] = 0 (5.0.3)
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lim
n→∞

[|| fn||66−
J

∑
j=1
||eit j

n4φ
j||66−||wJ

n||66] = 0 (5.0.4)

e−itJ
n4[(λ J

n )
1
2 wJ

n(λ
J
n x+ xJ

n)]⇀ 0 (5.0.5)

weakly in Ḣ1(R3). Moreover, for each j 6= k we have the following asymptotic decoupling of parameters:

λ
j

n

λ k
n
+

λ k
n

λ
j

n
+
|x j

n− xk
n|2

λ
j

n λ k
n

+
|t j

n(λ
j

n )
2− tk

n(λ
k
n )

2|
λ

j
n λ k

n

→ ∞ as n→ ∞. (5.0.6)

Lastly, we may additionally assume that for each j either t j
n ≡ 0 or t j

n →±∞.

We would like to prove a profile decomposition result analogous to Theorem 5.0.2 for functions in Ḃ1
2,q with the

error term going to zero in the appropriate sense: lim
J→J∗

limsup
n→∞

||eit4wJ
n||Xq(R×R3) = 0. Unfortunately, this will not

work for our space Xq, since ||eit4 f ||Xq = || f ||Ḃ1
2,q

. The error cannot possibly go to zero in this sense. To
proceed, a more refined space would have to be used. However, we can prove there is a profile decomposition for
the embedding Ḃ1

2,q ↪→ Ḃ1
2,∞.

Theorem 5.0.3. Let {un} ⊂ Ḃ1
2,q, ||un||Ḃ1

2,q
≤C. Then up to a subsequence (which we still call {un}), there exists

a family of profiles {φ l} in Ḃ1
2,q and sequences of scale-space indices {λl(n)}n for each l > 0 such that

un =
L

∑
l=1

φ
l
λl(n)

+ rn,L (5.0.7)

where

lim
L→+∞

(
limsup
n→+∞

||rn,L||Ḃ1
2,∞

)
= 0. (5.0.8)

The decomposition is asymptotically orthogonal in the sense that for any k 6= l,

| j(λk(n))− j(λl(n))| →+∞ or |k(λk(n))−2 j(λk(n))− j(λl(n))k(λl(n))| →+∞ as n→+∞. (5.0.9)

Suppose Theorem 4.3.1 can be shown in a space Z (replace Xq with Z in the theorem) for which we have an
appropriate Strichartz inequality and the refined Strichartz inequality

||eit4 f ||Z(R×R3) . || f ||
α

Ḃ1
2,q

sup
N
||eit4 fN ||βZ(R×R3)

. (5.0.10)

We see that

||eit4 f ||Z(R×R3) . || f ||αḂ1
2,q

sup
N
||eit4 fN ||βZ(R×R3)

. || f ||αḂ1
2,q

sup
N
|| fN ||Ḃ1

2,∞

= || f ||αḂ1
2,q
|| fN ||Ḃ1

2,∞
.

Since {un} is bounded in Ḃ1
2,q and ||rn,L||Ḃ1

2,q
→ ∞, we would have ||eit4rn,L||Z(R×R3)→ ∞ as we would want.

Now Equation (5.0.10) is not an unreasonable goal. In [10], the author proves the following analogous result in
the context of Ḣ1 which is stated here for d = 3.
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Lemma 5.0.4. Let f ∈ Ḣ1(R3). Then

||eit4 f ||L10
t,x(R×R3) . || f ||

1
5
Ḣ1

x
sup

N
||eit4 fN ||

4
5
L10

t,x(R×R3)
. (5.0.11)

We turn to proving Theorem 5.0.3. We will use a general approach using wavelets, which we will introduce now.
See [40] for a introduction to wavelets. Some of the following is taken from [25].

A wavelet basis for a function space X is a finite set of ”mother wavelets” {ψe}, together with their scaled and
translated counterparts {ψe

λ
} such that any function f ∈ X can be written as f = ∑

λ∈∇

cλ ψλ . Here ∇ indexes

translations by integers and dyadic scalings. ie; ψλ = 2
j
2 ψ(2 j ·−k) for some j ∈ Z, k ∈ Z. We will not need to

keep track of which specific j,k we are using in each instance and so we keep this suppressed in our notation.
For further details on constructions of mother wavelets, see [40], [49] and [47].

In [25], the authors give a general method for proving profile decomposition results using wavelet bases. Wavelet
bases are unconditional bases for Besov spaces in the sense that if X is a Besov space and {ψλ} is a wavelet
basis, then there exists a constant C such that for any finite subset E ⊂ ∇ and coefficients that satisfy |cλ |< |dλ |
for all λ , we have || ∑

λ∈E
cλ ψλ ||X ≤C|| ∑

λ∈E
dλ ψλ ||X .

Assume f has the following wavelet decomposition f = ∑
λ∈∇

dλ ψλ . Define E to be some ordering of ∇ so that

dm+1 ≤ dm and EM to be the set obtained by removing the first M elements from E. Define the nonlinear
projector QM so that QM f := ∑

λ∈EM

dλ ψλ . To show that the embedding X ⊂ Y has a profile decomposition, we

require two assumptions.

Assumption 1 The nonlinear projection satisfies

lim
M→+∞

max
|| f ||X≤1

|| f −QM f ||Y = 0. (5.0.12)

Assumption 2 Consider a sequence of functions ( fn)n>0 which are uniformly bounded in X and may be written
as fn = ∑

λ∈∇

cλ ,nψλ , and such that for all λ , the sequence cλ ,n converges towards a finite limit cλ as n→+∞.

Then the series ∑
λ∈∇

cλ ψλ converges in X with || ∑
λ∈∇

cλ ψλ ||X ≤C liminf
n→∞

|| fn||X , where C is a constant only

depending on the space X and on the choice of the wavelet basis.

Theorem 5.0.5. (General Profile Decomposition) [25] Consider two spaces with a continuous embedding X ⊂Y

such that there exists a wavelet basis which is unconditional for both X and Y. Assume assumptions 1 and 2 hold

for the embedding. Let {un} be a bounded sequence in X. Then, up to a subsequence (which we’ll still call {un},
there exists a family of profiles {φ l} in X and sequences of scale-space indices {λl(n)}n for each l > 0 such that

un =
L

∑
l=1

φ
l
λl(n)

+ rn,L (5.0.13)

where

lim
L→+∞

(
limsup
n→+∞

||rn,L||X
)
= 0. (5.0.14)

The decomposition is asymptotically orthogonal in the sense that for any k 6= l



CHAPTER 5. WAVELETS AND PROFILE DECOMPOSITION 63

| j(λk(n))− j(λl(n))| →+∞ or |k(λk(n))−2 j(λk(n))− j(λl(n))k(λl(n))| →+∞ as n→+∞. (5.0.15)

Remark 5.0.6. From [25], we have that assumption 2 holds if X is a Besov space.

Remark 5.0.7. From [25], we have the following embeddings

Ḃ
1
2
2,q ↪→ Ḃ

1
4
12
5 ,2q

↪→ Ḃ
1
2
2,∞ (5.0.16)

Lemma 5.0.8. Assumption 1 holds for the embedding Ḃ
1
4
12
5 ,2q

↪→ Ḃ
1
2
2,∞.

Proof. This follows from the representation of the Besov norm with wavelet coefficients.

Lemma 5.0.9. Assume we have the continuous embeddings X ⊂ Z ⊂ Y . Assume assumption 1 holds for the

embedding Z ⊂ Y , then assumption 1 holds for X ⊂ Y .

Proof.

max
|| f |X≤1

|| f −QM f ||Y ≤ max
|| f |Z≤1

|| f −QM f ||Y ,

so

lim
M→∞

max
|| f |Z≤1

|| f −QM f ||Y → 0⇒ lim
M→∞

max
|| f |X≤1

|| f −QM f ||Y → 0.

The proof of Theorem 5.0.3 is now clear.

Proof. From [25], we know there exists a wavelet basis that is unconditional with respect to both Ḃ
1
2
2,q and Ḃ

1
2
2,∞.

Assumption 1 holds for the embedding Ḃ
1
2
2,q ⊂ Ḃ

1
2
2,∞ by Remark 5.0.7, Lemma 5.0.8 and Lemma 5.0.9.

Assumption 2 holds for all Besov spaces by Remark 5.0.6 and by Theorem 5.0.5, this concludes the proof.



Chapter 6

Next Steps

In this chapter we consider a strategy to prove Conjecture 1.3.3 and also a conjecture that can be viewed as a
preliminary result to Conjecture 1.3.3. We begin with this preliminary conjecture.

Conjecture 6.0.10. Assume solutions to Equation (1.1.1) with data u0 ∈ Ḃ1
2,q, 2≤ q≤ ∞ evolve with the

condition u ∈ L∞
t Ḃ1

2,q. Let u0 ∈ Ḃ1
2,q , 2≤ q < ∞. There exists a unique solution u(t,x) to Equation (1.1.1) for all

time with u ∈ L∞
t Ḃ1

2,q(R+×R3)∩X(R+). If q < ∞, then u also scatters.

The strategy to prove this is to use the road map outlined by Kenig and Merle [28] (see Section 1.1). We will in
fact follow the procedure given by Visan in [10]. These Oberwolfach notes have been very useful to me
throughout my PhD. For this technique, we must assume that solutions to Equation (1.1.1) have their Ḃ1

2,∞ norms

bounded for all time.

Assumption 6.0.11. Solutions to Equation (1.1.1) with data u0 ∈ Ḃ1
2,q satisfy ||u||L∞

t Ḃ1
2,q(R×R3) < ∞.

Similar assumptions have been made when studying the Nonlinear Schrödinger Equation in a space where the
critical Sobolev norm is not preserved (for example, 0 < s < 1, [39]). See Section 1.1 for further discussion.

We will now outline the procedure as it relates to proving Conjecture 6.0.10. We require a number of Theorems,
Propositions and Lemmas and if they require stating, we will list them as ”statements” as they are unproven,
however some of the results in this thesis may only require minor modifications.

We will require an appropriate local well-posedness theory. Xq will not suffice, since it does not allow a profile
decomposition theorem (see Section 5). We will call our required space X . We require the following for the
space X:

1. A local well-posedness theorem analogous to Theorem 4.2.1.

2. A stability result analogous to Theorem 4.2.6.

3. A profile decomposition as outlined in Section 5.

4. A scattering condition: If ||u||X(R×R3) < ∞, then u scatters (see Section 4.4).

Using the notation of [10], we define
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L(E) := sup{||u||X(I) : ||u||Ḃ1
2,∞
≤ E} (6.0.1)

The set {E : L(E)< ∞} is non-empty because of the small data theory and is open. Therefore there is some
critical value 0 < Ec ≤ ∞ such that L(E)< ∞ for E < Ec and L(E) = ∞ for E ≥ Ec. We assume Ec < ∞, and
prove that L(Ec)< ∞ for a contradiction.

To get this contradiction, we require the following Palais-Smale condition.

Statement 6.0.12. Let un : In×R3→ C be a sequence of solutions to Equation (1.1.1) with ||(un)0||Ḃ1
2,∞
→ Ec,

for which there is a sequence of times tn ∈ In so that

lim
n→∞
||un||X([tn,∞)) = lim

n→∞
||un||X((−∞,tn]) = ∞ (6.0.2)

Then the sequence un(tn) has a subsequence that converges in Ḃ1
2,∞ modulo scaling and spatial translations.

Proof. We give a brief outline of the proof to highlight what lemmas need to be proved.

We apply the appropriate profile decomposition to the sequence {(un)0. We refer the reader to Section 5). In
particular, we use the notation from Theorem 5.0.2 and the reader should refer to this theorem for any variables
seen below.

It suffices to show that there is one profile. We assume there is more than one and reach a contradiction. It can be
shown that each of the profiles is smaller than the critical size Ec in the following sense: for some δ ,

sup
j

limsup
n→∞

||eit j
n4φ

j||Ḃ1
2,q
≤ Ec−2δ , (6.0.3)

where {φ j} are the linear profiles associated to the sequence. Associated to our linear profiles φ j, we define
nonlinear profiles according to the following rule. If t j

n ≡ 0, we define v j : I j×R3→ C to be the
maximal-lifespan solution to Equation (1.1.1) with initial data v j(0) = φ j. If t j

n →±∞, we define v j
n is also a

solution to Equation (1.1.1) which scatters to eit4φ j as t→±∞. These nonlinear profiles decouple in the
following sense. We define v j

n := (λ j
n )
− 1

2 [eit j
n4φ j]( x−x j

n

λ
j

n
)v j.

Statement 6.0.13. For j 6= k, lim
n→∞
||v j

nvk
n||X = 0.

What this is telling us is essentially that since the linear profiles are orthogonal, the nonlinear profiles do not
interact very much. This will lead to a contradiction, since the size of each profile is below the critical threshold
(from Equation 6.0.3) and so the X-norm of these nonlinear profiles are bounded. The mild interaction from
these nonlinear profiles cannot make the sum of these profiles too large in the X-norm. Indeed, from Equation
(6.0.3) it can be seen that ||v j||X .Ec,δ 1. We define

uJ
n :=

J

∑
j=1

v j
n + eit4wJ

n. (6.0.4)

This serves as an approximation of un. Statement 6.0.13 implies that

||uJ
n||X ≤C1. (6.0.5)

An appropriate stability lemma gives us
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||un−uJ
n||X ≤C2, (6.0.6)

uniformly in n. This contradicts Equation (6.0.2) and so there must indeed be only one profile.

The above is just a summary of the proof of course. There are a number of lemmas to be proved in order to close
this argument, however this has now become standard in the theory and the necessary ingredients are listed
above (1., 2., 3., 4.).

Theorem 6.0.12 implies the existence of a solution that is localized in both space and frequency. We make the
following definition.

Definition 6.0.14. We call a solution to Equation (1.1.1) almost periodic modulo symmetries if there exist

functions N : I→ R+, x : I→ R3, and C : R+→ R+ such that

∫
|x−x(t)|≥C(η)/N(t)

|∇u(t,x)|2dx+
∫

|ξ |≥C(η)N(t)

|ξ û(t,ξ )|2dξ ≤ η (6.0.7)

for all t ∈ I and η > 0.

Statement 6.0.15. If Conjecture 6.0.10 fails to be true, there exists ||u0||Ḃ1
2,∞

= Ec which evolves to a solution of

Equation (1.1.1) such that

||u||X([0,∞)) = ∞, (6.0.8)

and is almost periodic modulo symmetries.

Proof. If Conjecture 6.0.10 fails, then 0 < Ec < ∞ and there is some sequence of initial data {(un)0} evolving to
solutions un : In×R3→ C such that ||(un)0||Ḃ1

2,q
→ Ec and ||un||X(In)→ ∞. By Statement 6.0.12, there is some

sequence of times {tn} such that un(tn)→ φ ∈ Ḃ1
2,q modulo scaling and spatial translations for some φ ∈ Ḃ1

2,∞.
By a generalization of the Arzela-Ascoli theorem, it can be shown that φ evolves to an almost-periodic modulo
symmetries solution u that satisfies Equation (6.0.8).

Now the game is to rule out such an enemy. This is where the general framework ends and we will require a
more nuanced approach. In particular, in this case some variant of the Frequency-localized Interaction Morawetz
Inequality will need to be used.

We now discuss an approach to prove Conjecture 1.3.3 directly. In particular, we examine initial data of the form
u0 = w0 + v0, where w0 ∈ Ḃ1

2,q, v0 ∈ Ḣ1, with no relationship between ||v0||Ḣ1 and ||w0||Ḃ1
2,q

. We may take
||w0||Ḃ1

2,q
to be small, but this will require ||v0||Ḣ1 to be very large.

We recall that if ũ is a solution to i∂t ũ+4ũ = |w+ ũ|4(w+ ũ)−|w|4w, then u = ũ+w is a solution to (NLS).
We look to use the road map on ( ˜NLS) directly. Notice that the nonlinearity contains terms with four Besov
solutions (four instances of w or w̄). For this reason, we require a multilinear estimate:
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Statement 6.0.16. For 2≤ q≤ ∞, let fi ∈ Z∞(I) for i = 1,2,3,4 and f5 ∈ Z2, for the time interval I = [t0, t1).

Then

||
t∫

t0

ei(t−s)4 ( f1 f2 f3 f4 f5)(s)ds||Z2(I) . || f1||Z∞(I)|| f2||Z∞(I)|| f3||Z∞(I)|| f4||Z∞(I)|| f5||Z2(I), (6.0.9)

where Zq are spaces that are adapted to data from Ḃ1
2,q in a similar way that Xq are, satisfying analogous results

to those in Section 2 with the additional assumption that Zq satisfy the requirements 1., 2., 3., 4., (seen above) for
the equation ( ˜NLS).

Remark 6.0.17. Lemma 3.2.2 gives us a multilinear estimate in Xq with three components in X∞ and two in Xq.

It seems difficult to improve this to four components in X∞ and one in Xq, however this difficulty may just be

technical in nature.

This statement allows us to bound the Ḣ norm of any solution to ( ˜NLS). Indeed, let

|w+ ũ|4(w+ ũ)−|w|4w = ∑
i

ũ1
i · · · ũ5

i ,

where ũ j
i ∈ {v, v̄,w, w̄} for all i, j. Then by the Duhamel representation and Statement 6.0.16,

||ũ||L∞
t Ḣ1

x
∼ ||ũ||L∞

t Ḃ1
2,2
≤ ||ũ||Z2

≤ ||u0||Ḣ1 +∑
i
||ũ1

i ||Z∞ ||ũ2
i ||Z∞ ||ũ3

i ||Z∞ ||ũ4
i ||Z∞ ||ũ5

i ||Z2 .

We place each instance of w or w̄ in the norm || · ||Z∞ . Note that by the embedding Z∞ ⊂ Z2, ||v||Z∞ ≤ ||v||Z2 < ∞,
so that v and v̄ may be placed in the Z∞ norm or the Z2 norm.

This is not sufficient to use the road map technique, as this does not imply that ||ũ||L∞
t Ḣ1

x (I×R3) is bounded
independently of the time interval I, however it does give us a toe-hold. We require the following statement.

Statement 6.0.18. Solutions to ( ˜NLS) satisfy ||ũ||L∞
t Ḣ1

x (I×R3) <C independently of I.

With this statement and an appropriate space Zq, we may be able to prove Conjecture 1.3.3.
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