STOCHASTIC CORRELATION AND PORTFOLIO OPTIMIZATION BY MULTIVARIATE GARCH

by

Cuicui Luo

A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of Toronto

© Copyright 2015 by Cuicui Luo
Abstract

Stochastic Correlation and Portfolio Optimization by Multivariate Garch

Cuicui Luo
Doctor of Philosophy
Graduate Department of Mathematics
University of Toronto
2015

Modeling time varying volatility and correlation in financial time series is an important element in pricing, risk management and portfolio management. The main goal of this thesis is to investigate the performance of multivariate GARCH model in stochastic volatility and correlation forecast and apply these techniques to develop a new model to enhance the dynamic portfolio performance in several context, including hedge fund portfolio construction.

First, we examine the performance of various univariate GARCH models and regime-switching stochastic volatility models in crude oil market. Then these univariate models discussed are extended to multivariate settings and the empirical evaluation provides evidence on the use of the orthogonal GARCH in correlation forecasting and risk management.

The recent financial turbulence exposed and raised serious concerns about the optimal portfolio selection problem in hedge funds. The dynamic portfolio constructions performance of a broad set of a multivariate stochastic volatility models is examined in a fund of hedge context. It provides further evidence on the use of the orthogonal GARCH in dynamic portfolio constructions and risk management.

Further in this work, a new portfolio optimization model is proposed in order to improve the dynamic portfolio performance. We enhance the safety-first model with standard deviation constraint and derive an analytic formula by filtering the returns
with GH skewed t distribution and OGARCH. It is found that the proposed model outperforms the classic Mean-Variance model and Mean-CVAR model during financial crisis period for a fund of hedge fund.
Contents

1 Introduction .. 1
 1.1 Background ... 1
 1.2 Outlines and Contributions 2
 1.3 Future Research ... 4

2 Risk Modeling in Crude Oil Market 5
 2.1 Introduction ... 5
 2.2 Volatility Models ... 7
 2.2.1 Historical Volatility 7
 2.2.2 Regime switching models 10
 2.3 Data ... 11
 2.3.1 Data and Sample Description 11
 2.3.2 Distribution Analysis 12
 2.4 Results .. 13
 2.4.1 GARCH modeling 13
 2.4.2 Markov Regime Switching modeling 15
 2.5 Conclusion ... 19

3 Stochastic correlation in risk analytics: a financial perspective 25
 3.1 Introduction ... 25
 3.2 Stochastic Correlation Models 27
 3.2.1 Riskmetrics EWMA 27
 3.2.2 Multivariate GARCH Models 28
 3.2.3 Orthogonal GARCH Model 30
 3.2.4 Generalized Orthogonal GARCH Model 31
 3.3 Model Evaluation Measures 32
 3.3.1 Mean Absolute Error 33
 3.3.2 Model Confidence Set Approach 33
<table>
<thead>
<tr>
<th>3.3.3</th>
<th>Backtesing</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Empirical Results</td>
<td>36</td>
</tr>
<tr>
<td>3.4.1</td>
<td>First Subsample Period</td>
<td>38</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Second Subsample Period</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusion</td>
<td>40</td>
</tr>
</tbody>
</table>

4 Portfolio Optimization in Hedge Funds by OGARCH and Markov Switching Model

<table>
<thead>
<tr>
<th>4.1</th>
<th>Introduction</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Methodology</td>
<td>43</td>
</tr>
<tr>
<td>4.2.1</td>
<td>OGARCH Model</td>
<td>43</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Markov Switching Model</td>
<td>45</td>
</tr>
<tr>
<td>4.2.3</td>
<td>EWMA Model</td>
<td>47</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Portfolio Optimization Model</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Empirical Results</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>Asset Weight Sensitivities</td>
<td>52</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Explicit Calculation</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusion</td>
<td>56</td>
</tr>
</tbody>
</table>

5 Portfolio Optimization Under OGARCH with GH Skewed t Distribution

<table>
<thead>
<tr>
<th>5.1</th>
<th>Introduction</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Model</td>
<td>59</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Generalized hyperbolic distributions</td>
<td>59</td>
</tr>
<tr>
<td>5.2.2</td>
<td>OGARCH</td>
<td>63</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Portfolio return distribution</td>
<td>64</td>
</tr>
<tr>
<td>5.3</td>
<td>Portfolio Optimization under GH Skewed t distribution</td>
<td>65</td>
</tr>
<tr>
<td>5.3.1</td>
<td>VaR</td>
<td>65</td>
</tr>
<tr>
<td>5.3.2</td>
<td>CVaR</td>
<td>66</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Mean-Variance Portfolio Optimization</td>
<td>67</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Safety-first Portfolio Optimization</td>
<td>69</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Mean-CVaR Portfolio Optimization</td>
<td>75</td>
</tr>
<tr>
<td>5.4</td>
<td>Parameter estimation for skewed t distribution</td>
<td>76</td>
</tr>
<tr>
<td>5.5</td>
<td>Numerical Result</td>
<td>81</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Efficient Frontier</td>
<td>82</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Portfolio Performance Analysis</td>
<td>82</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusion</td>
<td>86</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Statistics on the Daily Crude Oil Index Returns from Feb. 2006 to July 2009</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Statistics on the Daily Crude Oil Index logreturn from February 2006 to July 2009</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>GARCH(1,1) estimation using t-distribution</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Various GARCH modeling</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Markov Regime Switching computation example</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Markov Regime Switching using Hamilton(1989)s Model</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Markov Regime Switching using t-distribution</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Markov Regime Switching using GED</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Test statistics for in sample estimation for the whole period</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Test statistics for out-of-sample forecast in 2008-2009</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Test statistics for out-of-sample forecast in 2013</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Optimal portfolio allocation for financial crises periods 32-90. The second row gives the average 10-day returns of each fund index.</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Statistics of realized portfolio returns for the out-of-sample period. Average 10-day portfolio return(Mean), standard deviation(St. Dev), worst-case return(Min) are in percentages.</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Statistics of realized portfolio returns for crisis periods(32-90). Average 10-day portfolio return(Mean), standard deviation(St. Dev), 5% quantile, worst-case return(Min) and Sharpe ratio are in percentages.</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Statistics of realized portfolio returns for normal periods(145-204). Average 10-day portfolio return(Mean), standard deviation (St. Dev), 5% quantile, worst-case return(Min) and Sharpe ratio are in percentages.</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Weight sensitivities for selected values of OGARCH parameters in period 60. The numbers in each column are in percentage. The second row gives the optimal weight of each fund index when gamma equals $\gamma - \Delta$.</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Weight sensitivities for selected values of OGARCH parameters in period 180. All the numbers are in percentage.</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>Statistics of daily returns of fund indices: Mean of daily returns of the fund indices in percentage</td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>Covariance of daily returns of the fund indices (10^{-5})</td>
<td>81</td>
</tr>
<tr>
<td>5.3</td>
<td>Estimated parameters</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>Statistics of realized portfolio returns for the out-of-sample period. average portfolio return (Mean), standard deviation (St. Dev), worst-case return (Min) are in percentages</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>Statistics of realized portfolio returns for the out-of-sample period. mean, standard deviation (St. Dev), worst-case return (Min) are in percentages</td>
<td>88</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Daily price movement of crude oil from Feb. 2006-July 2009.</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Daily returns of crude oil from Feb. 2006-July 2009.</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Distribution fit: Normal Distribution vs. T Distribution.</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Innovation and Standard Deviation of crude oil daily returns by GARCH(1,1).</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>simulation and forecasting</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>transitional probabilities in Markov Regime Switching with GED</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>return of two regimes in historical time series</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>price of two regimes in historical time series</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Daily return of S&P 500 and 10-yr Bond Index in 2002-2012</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>In sample estimation of stochastic correlation between S&P 500 and 10-yr Bond Index, 2002-2013</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>1-day ahead out-of-sample conditional correlation forecast between S&P 500 and 10-yr Bond Index in 2008-2009</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>1-day ahead out-of-sample conditional correlation forecast between S&P 500 and 10-yr Bond Index in 2013</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>10-day realized returns of the optimal portfolio selected by different models</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>MSM: optimal Portfolio Allocation. Each position along the vertical axis represents the weight percentage of each asset in optimal portfolio.</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>OGARCH: optimal weight of each asset allocated in Portfolio Allocation.</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>EWMA: optimal weight of each asset allocated in Portfolio Allocation.</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>GMM: optimal weight of each asset allocated in Portfolio Allocation.</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>The correlation of HFRX indices daily returns estimated by OGARCH model.</td>
<td>82</td>
</tr>
<tr>
<td>5.2</td>
<td>QQ-plot versus normal distribution of filtered daily returns of HFRX indices.</td>
<td>83</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.3</td>
<td>QQ-plot versus GH skewed t distribution of filtered daily returns of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HFRX indices</td>
<td>84</td>
</tr>
<tr>
<td>5.4</td>
<td>Mean-Variance efficient frontier vs 0.95 Mean-CVaR</td>
<td>85</td>
</tr>
<tr>
<td>5.5</td>
<td>The weekly returns of HFRX indices from 2003-2014</td>
<td>85</td>
</tr>
<tr>
<td>5.6</td>
<td>The realized weekly returns of HFRX indices in 2008</td>
<td>86</td>
</tr>
<tr>
<td>5.7</td>
<td>The realized weekly returns of HFRX indices for 2013.4-2014.4</td>
<td>86</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Background

Modeling time varying volatility and correlation in financial time series is an important element in pricing equity, risk management and portfolio management. Higher volatilities increase the risk of assets, and higher correlations cause an increased risk in portfolios. ARCH and Garch models have been applied to model volatility with a great success to capture some stylized facts of financial time series, such as time-varying volatility and volatility clustering. The Autoregressive Conditional Heteroskedasticity (ARCH) model was first introduced in the seminal paper of Engle (1982). Bollerslev (1986) generalized the ARCH model (GARCH) by modeling the conditional variance to depend on its lagged values as well as squared lagged values of disturbance.

As stock returns evolve, their respective volatilities also tend to move together overtime, across both assets and markets. Following the great success of univariate GARCH model in modeling the volatility, a number of multivariate GARCH models have been developed by Bollerslev et al. (1988), Engle and Kroner (1995) and Silvennoinen and Teräsvirta (2009). The Dynamic Conditional Correlation Multivariate GARCH (Engle, 2002) has been widely used to model the stochastic correlation in energy and commodity market; see Bicchetti and Maystre (2013), Creti and Joëts (2013) and Wang (2012). The correlation in crude oil and natural gas markets has been modeled by the orthogonal GARCH in Alexander (2004) and the generalized orthogonal GARCH model by Van der Weide (2002) is also developed. Regime switching models have become very popular in financial modeling since the seminal contribution of Hamilton (1989). Hamilton first proposed the Markov switching model (MSM) to model the real GNP in the US. Since then, these models have been widely used to model and forecast business
1 Introduction

cycles, foreign exchange rates and the volatility of financial time series. The hedge fund industry has grown rapidly in recent years and has become more and more important as an alternative investment class. The recent financial turbulence exposed and raised serious concerns about the optimal portfolio selection problem in hedge funds. Many papers have examined portfolio optimization in a hedge fund context. The structures of hedge fund return and covariance are crucial in portfolio optimization. The non-normal characteristics of hedge fund return have been widely described in the literature. Kat and Brooks (2001) find that the hedge fund returns exhibit significant degrees of negative skewness and excess kurtosis. According to Getmansky et al. (2004) and Agarwal and Naik (2004) the returns of hedge fund return are not normal and serially correlated.

The Mean-Variance portfolio optimization model proposed by Markowitz (1952) has become the foundation of modern finance theory. It assumes that asset returns follow the multivariate Gaussian distribution with constant parameters. However, it is well-established that the financial time series have asymmetric returns with fat-tail, skewness and volatility clustering characteristics. It takes standard deviation as a risk measure, which treats both upside and downside payoffs symmetrically.

The safety-first model is first introduced by Roy (1952) and the model is extended by Telser (1955) and Kataoka (1963). In recent years, many safety-first modeled have been developed and discussed due to the growing practical relevance of downside risk. Chiu and Li (2012) develop a modified safety-first model and have studied its application in financial risk management of disastrous events, Norkin and Boyko (2012) have improved the safety-first model by introducing one-sided threshold risk measures. The Kataoka’s safety-first model with a constraint of mean return is studied by Ding and Zhang (2009).

1.2 Outlines and Contributions

The main objective of this thesis is to investigate the performance of multivariate GARCH model in stochastic volatility and correlation forecast and apply these techniques to develop a new model to enhance the dynamic portfolio performance in several context, including hedge fund portfolio construction.

While the main objective of the thesis is multivariate distributions, Chapter 2 aims to examine the performance of various univariate GARCH models and regime-switching
stochastic volatility model in the crude oil market. Using daily return data from NYMX Crude Oil market for the period 13.02.2006 up to 21.07.2009, a number of univariate GARCH models are compared with regime-switching models. In regime-switching models, the oil return volatility follows a dynamic process whose mean is subject to shifts, which is governed by a two-state first-order Markov process. It is found that GARCH models are very useful in modeling a unique stochastic process with conditional variance, while regime-switching models have the advantage of dividing the observed stochastic behavior of a time series into several separate phases with different underlying stochastic processes. Furthermore, it is shown that the regime-switching models show similar goodness-of-fit result to GARCH modeling, while has the advantage of capturing major events affecting the oil market.

We then extend the empirical evaluation of stochastic correlation modeling in risk analytics from a financial perspective in Chapter 3. It provides evidence on the use of the orthogonal GARCH in correlation forecasting and risk management. The volatilities and correlations of S&P 500 index and US Generic Government 10 Year Yield bond index are investigated based on the exponentially weighted moving average model (EWMA) of RiskMetrics, the Dynamic Conditional Correlation Multivariate GARCH (DCC), the orthogonal GARCH (OGARCH) and the generalized orthogonal GARCH (GOGARCH). The out-of-sample forecasting performances of these models are compared by several methods. It is found that the overall performance of multivariate Garch models is better than EWMA and the out-of-sample sample estimation results show that OGARCH model outperforms the other models in stochastic correlation prediction.

Chapter 4 extends the univariate models discussed in Chapter 2 to multivariate settings. It provides further evidence on the use of the orthogonal GARCH in dynamic portfolio forecasting and risk management. We investigate and compare the performances of the optimal portfolio selected by using the Orthogonal GARCH (OGARCH) Model, Markov Switching Models and the Exponentially Weighted Moving Average (EWMA) Model in a fund of hedge funds. These models are used to calibrate the returns of four HFRX indices from which the optimal portfolio is constructed using the Mean-Variance method. The performance of each optimal portfolio is compared in an out-of-sample period. It is found that OGARCH gives the best-performed optimal portfolio with the highest Sharpe ratio and the lowest risk. Moreover, a sensitivity analysis for the parameters of OGARCH is conducted and it shows that the asset weights in
the optimal portfolios selected by OGARCH are very sensitive to slight changes in
the input parameters. Although there has been much work done on the compar-
isons of different multivariate Garch models and Markov Switching Models, this is
the first work to compare the performance of optimal portfolios in a hedge fund context.

In Chapter 5, we enhance the safety-first model with standard deviation constraint
and derive an analytic formula by filtering the returns with GH skewed t distribution
and OGARCH. The analytical solution to classical mean-variance model is also given
in terms of parameters in GH skewed t distribution and OGARCH model. Then
the parameters are estimated by EM algorithm. The optimal hedge fund portfolios
are selected by Mean-Variance, mean-CVaR and safety-first models in 2008 financial
crisis and stable period (2013-2014) and the portfolio performances are compared in
risk measurement. The efficient frontier is also presented. In the out-of-sample tests,
Mean-CVaR model gives the highest mean return in the post-crisis period, while the
modified safety-first model provides some improvements over the other two models
during the financial crisis period.

1.3 Future Research

Stochastic correlation forecast under multivariate GARCH models have been studied
by many researchers, but it still needs further research in many directions.

More research needs to be carried out on dynamic portfolio optimization for heavy-
tailed assets. One direction is to develop a multi-period extension of the single period
safety-first portfolio optimization model we have developed in Chapter 5. Another pos-
sible direction would be considering multivariate skewed t and independent component
analysis (ICA) in estimating the assets distributions directly.
Chapter 2

Risk Modeling in Crude Oil Market

2.1 Introduction

Risk analysis of crude oil market has always been the core research problem that deserves lots of attention from both the practice and academia. Risks occur mainly due to the change of oil prices. During the 1970s and 1980s there were a great deal increases in oil price. Such price fluctuations came to new peaks in 2007 when the price of crude oil doubled during the financial crisis. These fluctuations of double digit numbers in short periods of time continued between 2007 and 2008, when we see highly volatile oil prices. These fluctuations would not be worrisome if oil wouldn’t be such an important commodity in the world’s economy. When the oil prices become too high and the volatility increases, it has a direct impact on the economy in general and thus affects the government decisions regarding the market regulation and thus the firm and individual consumer incomes (Bacon and Kojima 2008).

Price volatility analysis has been a hot research area for many years. Commodity markets are characterized by extremely high levels of price volatility. Understanding the volatility dynamic process of oil price is a very important and crucial way for producers and countries to hedge various risks and to avoid the excess exposures to risks (Bacon and Kojima 2008).

To deal with different phases of volatility behavior and the dependence of the variability of the time series on its own past, models allowing for heteroscedasticity like ARCH, GARCH or regime-switching models have been suggested by researchers. The former
two are very useful in modeling a unique stochastic process with conditional variance; the latter has the advantage of dividing the observed stochastic behavior of a time series into several separate phases with different underlying stochastic processes. Both types of models are widely used in practice.

Hung et al. (2008) employ three GARCH models, i.e., GARCH-N, GARCH-t and GARCH-HT, to investigate the influence of fat-tailed innovation process on the performance of energy commodities VaR estimates. Kazmerchuk et al. (2005) consider a continuous-time limit of GARCH(1,1) model for stochastic volatility with delay and the model fit well for the market with delayed response. Narayan et al. (2008) use the exponential GARCH models to evaluate the impact of oil price on the nominal exchange rate. To validate cross-market hedging and sharing of common information by investors, Malik and Ewing (2009) employ bivariate GARCH models to estimate the relations between five different US sector indexes and oil prices. The continuous time GARCH (1,1) model is also used for volatility and variance swaps valuations in the energy market (Swishchuk, 2013, Swishchuk and Couch, 2010). On the other side, regime-switching has been used a lot in modeling stochastic processes with different regimes. Alizadeh et al. (2008) introduce a Markov regime switching vector error correction model with GARCH error structure and show how portfolio risks are reduced using state dependent hedge ratios. Agnolucci (2009) employ a two regime Markov-switching EGARCH model to analyze oil price change and find the probability of transition across regimes. Klaassen (2002) develops a regime-switching GARCH model to account for the high persistence of shocks generated by changes in the variance process. Oil shocks were found to contribute to a better description of the impact of oil on output growth (Cologni and Manera, 2009). There is no clear evidence regarding which approach outperforms the other one.

Fan et al. (2008) argue that GED-GARCH-based VaR approach is more realistic and more effective than the well-recognized historical simulation with ARMA forecasts in an empirical study. Aloui and Mabrouk (2010) find that the FIAPARCH model outperforms the other models in the VaR’s prediction and GARCH models also perform better than the implied volatility by inverting the Black equation. According to Agnolucci (2009), the GARCH model performs best when assuming GED distributed errors. Clear evidences of regime-switching have been discovered in the oil market. Fong and Seci (2001) believe that regime switching models provide a useful framework for the evolution of volatility and and forecasts of oil futures with short-term volatility.
The regime-switching stochastic volatility model performs well in capturing major events affecting the oil market (Vo, 2009).

This paper will focus on volatility modeling in crude oil market using both regime-switching stochastic volatility model and GARCH models. The next section will review various types of volatility models. We will then look at crude market data in Section 3. Computation and results analysis are presented in Section 4. The last section concludes the paper.

2.2 Volatility Models

2.2.1 Historical Volatility

We suppose that ϵ_t is the innovation in mean for energy log price changes or log returns. To estimate the volatility at time t over the last N days we have

$$V_{H,t} = \left[\frac{1}{N} \sum_{i=0}^{N-1} \epsilon_i^2 \right]^{1/2}$$

(2.1)

where N is the forecast period. This is actually an N-day simple moving average volatility, where the historical volatility is assumed to be constant over the estimation period and the forecast period. To involve the long-run or unconditional volatility using all previous returns available at time t, we have many variations of the simple moving average volatility model (Fama, 1970).

ARMA (R,M) model

Given a time series of data X_t, the autoregressive moving average (ARMA) model is a very useful for predicting future values in time series where there are both an autoregressive (AR) part and a moving average (MA) part. The model is usually then referred to as the ARMA(R,M) model where R is the order of the first part and M is the order of the second part. The following ARMA(R,M) model contains the AR(R) and MA(M) models:

$$X_t = c + \epsilon_t + \sum_{i=1}^{R} \varphi_i X_{t-i} + \sum_{j=1}^{M} \theta_j \epsilon_{t-j}$$

(2.2)
where φ_i and θ_j for any $i = 1, \ldots, R$, $j = 1, \ldots, M$ are parameters for AR and MA parts respectively.

ARMAX(R,M, b) model

To include the AR(R) and MA(M) models and a linear combination of the last b terms of a known and external time series d_t, one can have a model of ARMAX(R,M, b) with R autoregressive terms, M moving average terms and b exogenous inputs terms.

$$X_t = c + \epsilon_t + \sum_{i=1}^{R} \varphi_i X_{t-i} + \sum_{j=1}^{M} \theta_j \epsilon_{t-j} + \sum_{k=1}^{b} \eta_k d_{t-k}$$

(2.3)

where η_1, \ldots, η_b are the parameters of the exogenous input d_t.

ARCH(q)

Autoregressive Conditional Heteroscedasticity (ARCH) type modeling is the predominant statistical technique employed in the analysis of time-varying volatility. In ARCH models, volatility is a deterministic function of historical returns. The original ARCH(q) formulation proposed by Engle (1982) models conditional variance σ_t^2 as a linear function of the first q past squared innovations:

$$\sigma_t^2 = c + \sum_{i=1}^{q} \alpha_i \epsilon_{t-i}^2$$

(2.4)

This model allows today’s conditional variance to be substantially affected by the (large) square error term associated with a major market move (in either direction) in any of the previous q periods. It thus captures the conditional heteroscedasticity of financial returns and offers an explanation of the persistence in volatility. A practical difficulty with the ARCH(q) model is that in many of the applications a long length q is called for.

GARCH(p,q)

The Generalized Autogressive Conditional Heteroscedasticity (GARCH) developed by Bollerslev and Wooldridge (1992) generalizes the ARCH model by allowing the current conditional variance to depend on the past conditional variances as well as
past squared innovations. The GARCH(p,q) model is defined as

\[\sigma_t^2 = L + \sum_{j=1}^{q} \alpha_j \epsilon_{t-j}^2 + \sum_{i=1}^{p} \beta_i \sigma_{t-i}^2 \] \hspace{1cm} (2.5)

where \(L \) denotes the long-run volatility.

By accounting for the information in the lag(s) of the conditional variance in addition to the lagged \(t-i \) terms, the GARCH model reduces the number of parameters required. In most cases, one lag for each variable is sufficient. The GARCH(1,1) model is given by:

\[\sigma_t^2 = L + \beta_1 \sigma_{t-1}^2 + \alpha_1 \epsilon_{t-1}^2 \] \hspace{1cm} (2.6)

GARCH can successfully capture thick tailed returns and volatility clustering. It can also be modified to allow for several other stylized facts of asset returns.

EGARCH

The Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH) model introduced by [Nelson (1991)] builds in a directional effect of price moves on conditional variance. Large price declines, for instance may have a larger impact on volatility than large price increases. The general EGARCH(p,q) model for the conditional variance of the innovations, with leverage terms and an explicit probability distribution assumption, is

\[
\log \sigma_t^2 = L + \sum_{i=1}^{p} \beta_i \log \sigma_{t-i}^2 + \sum_{j=1}^{q} \beta_j \left[\frac{|\epsilon_{t-j}|}{\sigma_{t-j}} - E \left\{ \frac{|\epsilon_{t-j}|}{\sigma_{t-j}} \right\} \right] + \sum_{j=1}^{q} L_j \left(\frac{\epsilon_{t-j}}{\sigma_{t-j}} \right) \] \hspace{1cm} (2.7)

where \(E \left\{ \frac{|\epsilon_{t-j}|}{\sigma_{t-j}} \right\} = E \left\{ |z_{t-j}| \right\} = \sqrt{ \frac{2}{\pi} } \) for the normal distribution and \(E \left\{ \frac{|\epsilon_{t-j}|}{\sigma_{t-j}} \right\} = E \left\{ |z_{t-j}| \right\} = \sqrt{ \frac{v-2}{\pi} } \frac{\Gamma\left(\frac{v+1}{2} \right)}{\Gamma\left(\frac{v}{2} \right)} \) for the Student’s t distribution with degree of freedom \(\nu > 2 \).

GJR(p,q)

GJR(p,q) model is an extension of an equivalent GARCH(p,q) model with zero leverage terms. Thus, estimation of initial parameter for GJR models should be identical to those of GARCH models. The difference is the additional assumption with all leverage
2 Risk Modeling in Crude Oil Market

terms being zero:

$$\sigma^2_t = L + \sum_{j=1}^q \alpha_j \epsilon^2_{t-j} + \sum_{i=1}^p \beta_i \sigma^2_{t-i} + \sum_{j=1}^q L_j S_{t-j} \epsilon^2_{t-j}$$ (2.8)

where $S_{t-j} = 1$ if $\epsilon_{t-j} < 0$, $S_{t-j} = 0$ otherwise, with constraints

$$\sum_{j=1}^q \alpha_j + \sum_{i=1}^p \beta_i + \frac{1}{2} \sum_{j=1}^q L_j < 1$$ (2.9)

for any $\alpha_j \geq 0$, $\alpha_j + L_j \geq 0$, $L_j \geq 0$, $\beta_i \geq 0$ where $i = 1, \ldots, p$ and $j = 1, \ldots, q$.

2.2.2 Regime switching models

Markov regime-switching model has been applied in various fields such as oil and the macroeconomic analysis (Raymond and Rich [1997]), analysis of business cycles (Hamilton [1989]) and modeling stock market and asset returns (Engel [1994]).

We now consider a dynamic volatility model with regime-switching. Suppose a time series y_t follow an AR (p) model with AR coefficients, together with the mean and variance, depending on the regime indicator s_t:

$$y_t = \mu_{s_t} + \sum_{j=1}^p \varphi_{j,s} y_{t-j} + \epsilon_t$$ (2.10)

where $\epsilon_t \sim i.i.d Normal(0, \sigma^2_{s_t})$

The corresponding density function for y_t is:

$$f(y_t|s_t, y_{t-1}) = \frac{1}{\sqrt{2\pi\sigma_{s_t}}} exp \left[-\frac{\omega_t^2}{2\sigma^2_{s_t}} \right] = f(y_t|s_t, y_{t-1}, y_{t-p})$$ (2.11)

where $\omega_t = y_t - \mu_{s_t} - \sum_{j=1}^p \varphi_{j,s} y_{t-j}$.

The model can be estimated by use of maximum log likelihood estimation. A more practical situation is to allow the density function of y_t to depend on not only the current value of the regime indicator s_t but also the past values of the regime indicator s_t, which means the density function should takes the form of

$$f(y_t|S_t, y_{t-1}, y_{t-p})$$ (2.12)
where $S_{t-1} = s_{t-1}, s_{t-2}, \ldots, s_1$ is the set of all the past information on s_t.

2.3 Data

2.3.1 Data and Sample Description

The data spans a continuous sequence of 866 days from February 2006 to July 2009, showing the closing prices of the NYMEX Crude Oil index during this time period on a day to day basis. Weekends and holidays are not included in our data thus considering those days as non moving price days. Using the logarithm prices changes means that our continuously compounded return is symmetric, preventing us from getting nonstationary level of oil prices which would affect our return volatility. Table 1 presents the descriptive statistics of the daily crude oil price changes. In Figure 1 we show a plot of the Crude Oil daily price movement.

![Figure 2.1: Daily price movement of crude oil from Feb. 2006-July 2009.](image)

Table 2.1: Statistics on the Daily Crude Oil Index Returns from Feb. 2006 to July 2009

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>881</td>
</tr>
<tr>
<td>Mean</td>
<td>75.53</td>
</tr>
<tr>
<td>Maximum</td>
<td>145.29</td>
</tr>
<tr>
<td>Minimum</td>
<td>33.87</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>24.09</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.92</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>3.24</td>
</tr>
</tbody>
</table>

To get a preliminary view of volatility change, we show in Table 2 the descriptive
2 Risk Modeling in Crude Oil Market

statistics on the Daily Crude Oil Index logreturn ranging from February 2006 to July 2009. The corresponding plot is given in Figure 2.

Table 2.2: Statistics on the Daily Crude Oil Index logreturn from February 2006 to July 2009

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>880</td>
</tr>
<tr>
<td>Mean</td>
<td>6.4692e-006</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.1641</td>
</tr>
<tr>
<td>Minimum</td>
<td>-0.1307</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.0302</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.1821</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>7.0637</td>
</tr>
</tbody>
</table>

2.3.2 Distribution Analysis

The following graph (Figure 3) displays a distribution analysis of our data ranging from February 2006 up to July 2009. The data is the log return of the daily crude oil price movements over the time period mentioned above. We can see that the best distribution for our data is a T-Distribution which is shown by the blue line (Figure 3). The red line represents the normal distribution of our data. So a conditional T-Distribution is preferred to normal distribution in our research. An augmented Dickey-Fuller univariate unit root test yields a resulted p-value of 1.0*e-003, 1.1*e-003 and 1.1*e-003 for lags of 0, 1 and 2 respectively. All p-values are smaller than 0.05, which indicates that the time series has a trend-stationary property.
2.4 Results

2.4.1 GARCH modeling

We first estimated the parameter of the GARCH(1,1) model using 865 observations in Matlab, and then tried various GARCH models using different probability distributions with the maximum likelihood estimation technique. In many financial time series the standardized residuals \(z_t = \epsilon_t / \sigma_t \) usually display excess kurtosis which suggests departure from conditional normality. In such cases, the fat-tailed distribution of the innovations driving a dynamic volatility process can be better modeled using the Student’s t or the Generalized Error Distribution (GED). Taking the square root of the conditional variance and expressing it as an annualized percentage yields a time-varying volatility estimate. A single estimated model can be used to construct forecasts of volatility over any time horizon. Table 3 presents the GARCH(1,1) estimation using t-distribution. The conditional mean process is modeled by use of ARMAX(0,0,0).

Substituting these estimated values in the math model, we yield the explicit form as follows:

\[y_t = 6.819e - 4 + \epsilon_t \]
<table>
<thead>
<tr>
<th>Model</th>
<th>AIC</th>
<th>BIC</th>
<th>lnL</th>
<th>Parameter</th>
<th>Value</th>
<th>Standard Error</th>
<th>T Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean: AR-MAX(0,0,0); Variance: GARCH(1,1)</td>
<td>-4559.9</td>
<td>-4536.1</td>
<td>2284.97</td>
<td>C</td>
<td>6.819e-4</td>
<td>5.0451e-4</td>
<td>1.3516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>2.216e-6</td>
<td>1.306e-6</td>
<td>1.7011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β_1</td>
<td>0.9146</td>
<td>0.0174</td>
<td>52.6514</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α_1</td>
<td>0.0815</td>
<td>0.0179</td>
<td>4.5539</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DoF</td>
<td>34.603</td>
<td>8.4422e-7</td>
<td>4.0988e+7</td>
</tr>
</tbody>
</table>

Table 2.3: GARCH(1,1) estimation using t-distribution

\[\sigma_t^2 = 2.216e - 6 + 0.9146\sigma_{t-1}^2 + 0.0815\epsilon_{t-1}^2 \]

Figure 2.4: Innovation and Standard Deviation of crude oil daily returns by GARCH(1,1).

Figure 4 depicts the dynamics of the innovation and standard deviation using the above estimated GARCH model, i.e., the ARMAX(0,0,0) GARCH(1,1) with the log likelihood value of 2284.97. We want to find a higher log likelihood value for other GARCH modeling, so we use the same data with different models in order to increase the robustness of our model. We now try different combinations of ARMAX and GARCH, EGARCH and GJR models. Computation results are presented in Table 4.

A general rule for model selection is that we should specify the smallest, simplest models that adequately describe data because simple models are easier to estimate,
easier to forecast, and easier to analyze. Model selection criteria such as AIC and BIC penalize models for their complexity when considering best distributions that fit the data. Therefore, we can use log likelihood (LLC), Akaike (AIC) and Bayesian (BIC) information criteria to compare alternative models. Usually, differences in LLC across distributions cannot be compared since distribution functions can have different capabilities for fitting random data, but we can use the minimum AIC and BIC, maximum LLC values as model selection criteria (Cousineau et al., 2004).

As can be seen from Table 4, the log likelihood value of ARMAX(1,1,0) GJR(2,1) yields the highest log likelihood value 2292.32 and lowest AIC value -4566.6 among all modeling technique. Thus we conclude that GJR models should be our preferred model.

The forecasting horizon was defined to be 30 days (one month). The simulation uses 20,000 realizations for a 30-day period based on our fitted model ARAMX(1,1,0) GJR(2,1) and the horizon of 30 days from Forecasting. In Figure 5 we compare the outputs from forecasting with those derived from Simulation. The first four panels of Figure 5 compare directly each of the outputs from ”Forecasting” with the corresponding statistical result obtained from ”Simulation”. The last two panels of Figure 5 illustrate histograms from which we could compute the approximate probability density functions and empirical confidence bounds. When comparing forecasting with its counterpart derived from the Monte Carlo simulation, we show computation for four parameters in the first four panels of Figure 5: the conditional standard deviations of future innovations, the MMSE forecasts of the conditional mean of the NASDAQ return series, cumulative holding period returns and the root mean square errors (RMSE) of the forecasted returns. The fifth panel of Figure 5 uses a histogram to illustrate the distribution of the cumulative holding period return obtained if an asset was held for the full 30-day forecast horizon. In other words, we plot the logreturn obtained by investing in NYMEX Crude Oil index today, and sold after 30 days. The last panel of Figure 5 uses a histogram to illustrate the distribution of the single-period return at the forecast horizon, that is, the return of the same mutual fund, the 30th day from now.

2.4.2 Markov Regime Switching modeling

We now try Markov Regime Switching modeling in this section. The purpose is twofold: first, to see if Markov Switching regressions can beat GARCH models in time series modeling; second, find turmoil regimes in historical time series. We employ a Markov
Regime Switching computation example in Table 5 to illustrate our results.

The model in Table 5 assume Normal distribution and allow all parameters to switch. We use $S = [111]$ to control the switching dynamics, where the first elements of S control the switching dynamic of the mean equation, while the last terms control the switching dynamic of the residual vector, including distribution parameters mean and variance. A value of “1” in S indicates that switching is allowed in the model while a value of “0” in S indicates that parameter is not allowed to change states. Then the model for the mean equation is:

\[
\begin{align*}
\text{State } 1(S_t = 1) & \quad \text{State } 2(S_t = 2) \\
y_t &= -0.0015 - 0.0667y_{t-1} & y_t &= 0.0012 - 0.0934y_{t-1} \\
\epsilon_t &\sim N(0, 0.0306^2) & \epsilon_t &\sim N(0, 0.0115^2)
\end{align*}
\]

where ϵ_t is residual vector which follows a particular distribution. The transition matrix, $P = \begin{bmatrix} 0.99 & 0.01 \\ 0.01 & 0.99 \end{bmatrix}$, controls the probability of a regime switch from state 1(2) (column 1(2)) to state 2(1) (row 2(1)). The sum of each column in P is equal to one, since they represent full probabilities of the process for each state.

In order to yield the best fitted Markov Regime Switching models, we now try various parameter settings for traditional Model by Hamilton (1989) and complicated setting using t-distribution and Generalized Error Distribution. We present computational results in Table 6, 7 and 8. A comparison of log Likelihood values indicate that complicated setting using t-distribution and Generalized Error Distribution usually are preferred. The best fitted Markov Regime Switching models should assume GED and allow all parameters to change states (see Table 8).

We now focus on analysis using the best fitted Markov Regime Switching model, i.e., “MS model, $S = [11111]$ (GED)” in Table 8. Figure 6 presents transitional probabilities in Markov Regime Switching with GED: fitted state probabilities and smoothed state probabilities. Based on such a transitional probability figure, we can classify historical data into two types according to their historical states.

As can be seen from Figure 7 and 8, the total historical time series are divided into two regimes: a normal one with small change (state 2) and a turmoil one with big risk (state 1). For each state, regime Switching model identifies three periods of data. The normal regime includes two periods: 2006-02-10 to 2006-12-11, and 2007-01-30 to 2007-10-14. The turmoil regime also includes two periods: 2006-12-12 to 2007-01-29,
and 2007-10-15 to 2009-07-07. The first turmoil lasts only one and a half months, but the second one covers almost the total financial crisis.
Figure 2.6: transitional probabilities in Markov Regime Switching with GED

Figure 2.7: return of two regimes in historical time series
2.5 Conclusion

We have examined crude oil price volatility dynamics using daily data for the period 13.02.2006 up to 21.07.2009. To model volatility, we employed the GARCH, EGARCH and GJR models and various Markov Regime Switching models using the maximum likelihood estimation technique. Codes are written in Matlab language. We have compared several parameter settings in all models. In GARCH models, the ARMAX (1,1,0)/ GJR(2,1) yielded the best fitted result with maximum log likelihood value of 2292.32 when assuming that our data follow a t-distribution. Markov Regime Switching models generate similar fitted result but with a bit lower log likelihood value. Markov Regime Switching modeling show interesting results by classifying historical data into two states: a normal one and a turmoil one. This can account for some market stories in financial crisis.
<table>
<thead>
<tr>
<th>Model</th>
<th>AIC</th>
<th>BIC</th>
<th>lnL</th>
<th>Parameter</th>
<th>Value</th>
<th>Standard Error</th>
<th>T Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean : ARMAX(1, 1, 0)</td>
<td>-4561.0</td>
<td>-4527.7</td>
<td>2287.5</td>
<td>C</td>
<td>8.995e-4</td>
<td>6.6851e-4</td>
<td>1.3455</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ϕ_1</td>
<td>-0.3119</td>
<td>0.4386</td>
<td>-0.7111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>θ_1</td>
<td>0.2363</td>
<td>0.4465</td>
<td>0.5292</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>2.0564e-6</td>
<td>1.2567e-6</td>
<td>1.6363</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β_1</td>
<td>0.9175</td>
<td>0.0169</td>
<td>54.1607</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α_1</td>
<td>0.0790</td>
<td>0.0174</td>
<td>4.5436</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DoF</td>
<td>30.107</td>
<td>1.6771e-4</td>
<td>2287.5</td>
</tr>
<tr>
<td>Variance : GARCH(1, 1)</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>6.6556e-4</td>
<td>6.2368e-4</td>
<td>1.0672</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ϕ_1</td>
<td>-0.3067</td>
<td>0.3895</td>
<td>-0.7874</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>θ_1</td>
<td>0.2226</td>
<td>0.3969</td>
<td>0.5607</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>-0.0396</td>
<td>0.0297</td>
<td>-1.3339</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β_1</td>
<td>0.9950</td>
<td>3.6255e-3</td>
<td>274.4553</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α_1</td>
<td>0.1459</td>
<td>0.0281</td>
<td>5.1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>-0.0316</td>
<td>0.0155</td>
<td>-2.0337</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DoF</td>
<td>37.596</td>
<td>48.455</td>
<td>0.7759</td>
</tr>
<tr>
<td>Mean : ARMAX(1, 1, 0)</td>
<td>-4557.8</td>
<td>-4524.5</td>
<td>2286.3</td>
<td>C</td>
<td>6.912e-4</td>
<td>6.3923e-4</td>
<td>1.0813</td>
</tr>
<tr>
<td>Variance : EGARCH(1, 1)</td>
<td></td>
<td></td>
<td></td>
<td>ϕ_1</td>
<td>-0.2967</td>
<td>0.4499</td>
<td>-0.6596</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>θ_1</td>
<td>0.2218</td>
<td>0.4567</td>
<td>0.4852</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>2.1511e-6</td>
<td>1.2682e-6</td>
<td>1.6961</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β_1</td>
<td>0.9189</td>
<td>0.0168</td>
<td>54.7178</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α_1</td>
<td>0.0592</td>
<td>0.0211</td>
<td>2.8779</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>0.0344</td>
<td>0.0254</td>
<td>1.3541</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DoF</td>
<td>38.36</td>
<td>1.1967e-4</td>
<td>3.2054e+4</td>
</tr>
<tr>
<td>Mean : ARMAX(1, 1, 0)</td>
<td>-4560.9</td>
<td>-4522.8</td>
<td>2288.4</td>
<td>C</td>
<td>5.649e-4</td>
<td>6.4635e-4</td>
<td>0.8737</td>
</tr>
<tr>
<td>Variance : GJR(1, 1)</td>
<td></td>
<td></td>
<td></td>
<td>ϕ_1</td>
<td>-0.3582</td>
<td>0.4030</td>
<td>-0.8891</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>θ_1</td>
<td>0.2843</td>
<td>0.4138</td>
<td>0.6871</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>3.5044e-6</td>
<td>1.9942e-6</td>
<td>1.7573</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β_1</td>
<td>0</td>
<td>0.0255</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β_2</td>
<td>0.8682</td>
<td>0.0294</td>
<td>29.5592</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>α_1</td>
<td>0.0910</td>
<td>0.0255</td>
<td>3.5714</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>0.0677</td>
<td>0.0346</td>
<td>1.9552</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DoF</td>
<td>50.013</td>
<td>6.0689e-6</td>
<td>8.2409e+6</td>
</tr>
</tbody>
</table>

Table 2.4: Various GARCH modeling
Table 2.5: Markov Regime Switching computation example

<table>
<thead>
<tr>
<th>Model Distribution</th>
<th>Log Likelihood</th>
<th>Switching Parameters</th>
<th>Transition Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Model</td>
<td>2257.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S = [1 1]$</td>
<td></td>
<td>Model's STD</td>
<td>0.0366</td>
</tr>
<tr>
<td>(Normal)</td>
<td></td>
<td>State 1 State 2</td>
<td>0.0115 0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indep column 1</td>
<td>-0.0013 0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indep column 2</td>
<td>-0.0943 0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non Switching Parameter</th>
<th>State 1</th>
<th>State 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>0.01</td>
<td>0.99</td>
</tr>
<tr>
<td>Parameter</td>
<td>0.91</td>
<td>0.01</td>
</tr>
<tr>
<td>Parameter</td>
<td>-0.0943</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Non Switching Parameter</th>
<th>State 1</th>
<th>State 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parameter</td>
<td>0.01</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Parameter</td>
<td>0.91</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Parameter</td>
<td>-0.0943</td>
<td>0.01</td>
</tr>
<tr>
<td>Model Distribution</td>
<td>Log Likelihood</td>
<td>Non Switching Parameters</td>
<td>Switching Parameters</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Hamilton (1989)'s Model, $S = [111]$</td>
<td>2212.38</td>
<td>N/A</td>
<td>0.0008, 0.0001</td>
</tr>
<tr>
<td></td>
<td>2257.34</td>
<td>N/A</td>
<td>0.0013, 0.0010</td>
</tr>
</tbody>
</table>

Table 2.6: Markov Regime Switching using Hamilton (1989)'s Model
Table 2.7: Markov Regime Switching using t-distribution

<table>
<thead>
<tr>
<th>Model t Distribution</th>
<th>log Likelihood</th>
<th>Non Switching Parameter</th>
<th>Switching Parameters</th>
<th>Transition Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Model $S = [111]$</td>
<td>2172.41</td>
<td>STD 0.0128</td>
<td>Indep column 1 0.0021</td>
<td>0.45 0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DoF 2.9506</td>
<td>Indep column 2 -0.3925</td>
<td>0.55 0.43</td>
</tr>
<tr>
<td>$S = [111]$</td>
<td>2212.38</td>
<td>N/A</td>
<td>Model’s STD 0.0130</td>
<td>0.80 0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indep column 1 0.0013</td>
<td>0.80 0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DoF 3.2408</td>
<td>0.20 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indep column 2 -0.2015</td>
<td>0.9080</td>
</tr>
<tr>
<td>$S = [111]$</td>
<td>2212.38</td>
<td>N/A</td>
<td>Model’s STD 0.0262</td>
<td>0.80 0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indep column 1 -0.0012</td>
<td>0.80 0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DoF 7.4904</td>
<td>0.20 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indep column 2 -0.0736</td>
<td>0.9015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indep column 3 -0.0121</td>
<td>0.0422</td>
</tr>
</tbody>
</table>
Table 2.8: Markov Regime Switching using GED

<table>
<thead>
<tr>
<th>Model Distribution</th>
<th>log Likelihood</th>
<th>Switching Parameters</th>
<th>Transition Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>State 1 State 2</td>
<td></td>
</tr>
<tr>
<td>MS Model $S = [111]$ (GED)</td>
<td>2257.36</td>
<td>Model’s STD 0.0029 0.0094</td>
<td>0.06 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Value of k 1.4987 0.8011</td>
<td>0.94 0.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indep column 1 0.0020 0.0013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indep column 2 0.8905 0.2207</td>
<td></td>
</tr>
<tr>
<td>MS Model $S = [111]$ (GED)</td>
<td>2257.36</td>
<td>Model’s STD 0.0029 0.0094</td>
<td>0.99 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Value of k 0.7122 0.4675</td>
<td>0.01 0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indep column 1 0.0014 0.0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indep column 2 0.0706 0.0848</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indep column 3 0.0287 0.0384</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 3

Stochastic correlation in risk analytics: a financial perspective

3.1 Introduction

Risk analytics has been popularized by some of today’s most successful companies through new theories such as enterprise risk management (Wu and Olson, 2010, Wu et al., 2010). It drives business performance using new sources of data information and advanced modeling tools and techniques. For example, underwriting decisions in the electric power, oil, natural gas and basic-materials industries can be improved by advanced credit-risk analytics so that higher revenues and lower costs are yielded through the analytics of their commodity exposures. By incorporating, we help clients produce models with significantly higher predictive power. Risk analytics can be correlated with the public resources management (Chen et al., 2015).

However, investments from different sources of projects, products and markets can be highly correlated due to the interconnections among these projects, products and markets. Maximizing the benefit from these investments cannot be based on the data and models individually from different sources; it may be more based on the correlation structure dynamically from different sources. For example, value at risk (VaR) has been widely used in financial institutions as a risk management tool after its adoption by the Basel Committee on Banking (1996). Modeling time-varying volatility and correlation for portfolios with a large number of assets is critical and especially valuable in VaR measurement. Significantly higher predictive power has been observed when considering correlation structure in VaR modeling.
Modeling time varying volatility and correlation in financial time series is an important element in pricing equity, risk management and portfolio management. Many multivariate stochastic correlation models have been proposed to model the time-varying covariance and correlations. Following the great success of univariate GARCH model in modeling the volatility, a number of multivariate GARCH models have been developed; see Bollerslev et al. (1988), Engle and Kroner (1995) and Silvennoinen and Teräsvirta (2009). The dynamic conditional correlation Multivariate GARCH (Engle, 2002) has been widely used to model the stochastic correlation in energy and commodity market (Bicchetti and Maystre (2013), Creti and Joëts (2013) Wang (2012)). The correlation in crude oil and natural gas markets has been modeled by the orthogonal GARCH in the paper of Alexander (2004) and the generalized orthogonal GARCH model is also developed by Van der Weide (2002). Besides the multivariate GARCH models, the exponentially weighted moving average model (EWMA) of RiskMetrics (1996), which is the simplest matrix generalization of a univariate volatility mode, is also very widely used in variance and covariance forecasting.

Since so many models have been developed over the years, the prediction accuracy of these models becomes a major concern in time series data mining. A number of studies have compared the forecasting performance of the multivariate correlation modes. In the paper of Wong and Vlaar (2003), it shows that the DCC model outperforms other alternatives in modeling time-varying covariance. It is noted that the optimal hedge fund portfolio constructed by dynamic covariance models has lower risk (Giamouridis and Vrontos 2007). Harris and Mazibas (2010) provide further evidence that the use of multivariate GARCH models in optimal portfolios selection has better performances than static models and also show that exponentially weighted moving average (EWMA) model has the best performance with superior risk-return trade-off and lower tail risk. Engle and Sheppard (2008) compare the performance of some Large-scale multivariate GARCH models using over 50 assets and find that there is value in modeling time-varying covariance of large portfolio by these models. Lu and Tsai (2010) also find that the multivariate GARCH models provide a substantial improvement to the forecast accuracy of the time-varying correlation. The out-of-sample forecasting accuracy of a range of multivariate GARCH models with a focus on large-scale problems is also studied by Caporin (2012) and Laurent and Violante (2012).

This paper aims to evaluate the forecasting performance of RiskMetrics EWMA, DCC, OGARCH and GOGARCH models for the correlation between S&P 500 index
and US Generic Government 10 year yield bond index over 10 years period from 2002 to 2013. First we estimate these models and obtain out-of-sample forecasts of time-varying correlations. Then mean absolute error (MAE) and model confidence set (MCS) approach are applied to assess the prediction abilities. We also compute one-step-ahead out-of-sample VaR of an equally weighted portfolio and perform a backtesting analysis.

The paper proceeds as follows. Section 2 introduces stochastic correlation models namely, the RiskMetrics EWMA model, DCC, OGARCH and GOGARCH. Section 3 presents the evaluation measures used to compare the forecast performance of different models. Section 4 explains the data involved and presents empirical results on the forecast comparison and section 5 concludes the paper.

3.2 Stochastic Correlation Models

There are many methods to estimate the covariance matrix of a portfolio. In this paper, we compare the forecasting performance of the models that are widely adopted by market practitioners. In this section, we review these stochastic correlation models.

Let y_t be a $k \times 1$ vector multivariate time series of daily log returns on k assets at time t:

$$y_t = \mu_t + \epsilon_t$$ \hspace{1cm} (3.1)

$$E(y_t|\Omega_{t-1}) = \mu_t$$ \hspace{1cm} (3.2)

$$Var(y_t|\Omega_{t-1}) = E(\epsilon_t\epsilon_t'|\Omega_{t-1}) = H_t$$ \hspace{1cm} (3.3)

Where Ω_{t-1} denotes sigma field generated by the past information until time $t-1$.

3.2.1 Riskmetrics EWMA

The exponentially weighted moving average (EWMA) models are very popular among market practitioners. The RiskMetrics EWMA model assigns the highest weight to the latest observations and the least weight to the oldest observations in the volatility estimation.
The multivariate form of EWMA model is defined as

\[H_t = \lambda H_{t-1} + (1 - \lambda) y_{t-1} y'_{t-1} \]

(3.4)

For each individual element, it is given by

\[\sigma^2_{i,j,t} = \lambda \sigma_{i,t-1} \sigma_{j,t-1} + (1 - \lambda) y_{i,t-1} y_{j,t-1} \]

(3.5)

\(\lambda \) is a decay factor, which determines the importance of historical observations used for estimating the covariance matrix. The value of decay factor depends on the sample size and varies by asset class. J.P. Morgan (1996) suggests that a decay factor of 0.94 is used for daily data set.

Given the decay factor and initial value \(\hat{\Sigma}_0 \), it is very easy to forecast the conditional covariance matrix. The full sample covariance matrix \(\hat{\Sigma}_0 \) is defined as

\[\hat{\Sigma}_0 = \frac{1}{T-1} \sum_{t=1}^{T} (y_t - \bar{y})(y_t - \bar{y}) \]

(3.6)

The EWMA model is very easy to implement for a larger number of assets and the conditional covariance is always semi-definite. The conditional covariance forecasting is also straightforward. However, EWMA model is lack of firm statistical basis and has to estimate decay factor.

3.2.2 Multivariate GARCH Models

Following the great success of univariate GARCH model in modeling the volatility, many multivariate GARCH models have been proposed for conditional covariance and correlation modeling. The first direct extension of univariate GARCH model is VEC-GARCH model of (Bollerslev et al., 1988) and BEKK models (Engle and Kroner, 1995). When there is a big data set in the portfolio, the large number of covariance is difficult to estimate and evaluation is also complicated. A large number of unknown parameters in these models prevents their successful application in practice.

To solve the larger-scale problems, factor and orthogonal models are introduced. Bollerslev (1990) introduced constant conditional correlation (CCC) model with the restriction of constant conditional correlation which reduces the number of parameters. By making the conditional correlation matrix time-dependent, CCC is generalized by the dynamic conditional correlation (DCC) model (Engle, 2002). DCC model captures
the advantages of GARCH models and simplifies the computation of multivariate GARCH.

In the DCC model, time series of daily log returns on k assets y_t is conditionally multivariate normal with mean zero. That is,

$$y_t = \epsilon_t$$ \hspace{1cm} (3.7)

$$H_t = D_t R_t D_t$$ \hspace{1cm} (3.8)

$$D_t = diag(\sigma_{11,t}, \ldots, \sigma_{kk,t})$$ \hspace{1cm} (3.9)

where H_t is the conditional covariance matrix and R_t is the correlation matrix. D_t is a diagonal matrix with $\sigma_{11,t}$, \ldots, $\sigma_{kk,t}$ on main diagonal, which can be estimated form the univariate GARCH models.

As noted by [Engle, 2002], R_t is also the conditional covariance matrix of the standardized returns. The standardized residuals z_t is defined as

$$z_t = D_t^{-1} \epsilon_t$$ \hspace{1cm} (3.10)

and

$$E(z_t z_t' | \Omega_{t-1}) = R_t$$ \hspace{1cm} (3.11)

In this paper, we consider DCC GARCH (1,1) models by [Engle, 2002]. That is, the dynamics for the conditional correlations and the conditional variances follow GARCH-type model. The DCC model can be estimated in two steps. The first step is to estimate the conditional volatility, $\sigma_{kk,t}$ by using GARCH (1,1) model

$$\sigma^2_{kk,t} = \omega_k + \alpha_k \epsilon^2_{k,t-1} + \beta_k \sigma^2_{kk,t-1}$$ \hspace{1cm} (3.12)

The second step is to estimate the time varying stochastic correlation R_t.

$$Q_t = (1 - \alpha_0 - \beta_0) \tilde{Q} + \alpha_0 z_{t-1} z_{t-1}' + \beta_0 Q_{t-1}$$ \hspace{1cm} (3.13)

$$R_t = diag(Q_t)^{-1} Q_t diag(Q_t)^{-1}$$ \hspace{1cm} (3.14)

where Q_t is a positive definite matrix defining the structure of the dynamics. \tilde{Q} is the
unconditional covariance matrix of z_t and it can be estimated by

$$\bar{Q} = \frac{1}{T} \sum_{t=1}^{T} z_t z_t'$$ \hspace{1cm} (3.15)

The advantage of DCC model is that it separates the estimation of the volatility for each time series by using single univariate models and the correlation part by imposing the same dynamics to all the correlations. The problem is that α_0 and β_0 in DCC are scalars, so all the conditional correlations follow the same dynamics, which is not flexible.

3.2.3 Orthogonal GARCH Model

In addition to the DCC model, the orthogonal GARCH (OGARCH) model is introduced by Alexander and Chibumba (1997) and Alexander (2000) based on univariate GARCH model and principal component analysis (PCA). The OGARCH model is computationally simpler than the other multivariate GARCH models for a large dimensional covariance matrix because the large number of parameters is reduced by PCA. OGARCH model has achieved outstanding accuracy in correlation forecasting.

In the orthogonal GARCH model, the observed time series are transformed to uncorrelated time series by using PCA. Let Y be a multivariate time series of daily returns on k assets with mean zero and length T and y_i is the ith row of Y. Then the $T \times k$ matrix Y can be approximated by

$$Y = PW'$$ \hspace{1cm} (3.16)

Where the $T \times k$ matrix P is the first n principal components of the covariance matrix of Y for $n \leq k$. W is a $k \times k$ orthogonal matrix of the eigenvectors that are arranged in descending order of the corresponding eigenvalues, so $W = W^{-1}$.

Then we can obtain

$$H_t = W \Sigma_t W'$$ \hspace{1cm} (3.17)

Where $\Sigma_t = diag(\sigma_{1,1,t}^2, \ldots, \sigma_{n,n,t}^2)$.

In this paper, the conditional variance of the ith principal component p_i, $i = 1, \ldots, N$,
is modeled by GARCH (1,1) model as

$$p_{i,t} = \mu_{i,t} + \epsilon_{i,t} \tag{3.18}$$

$$\sigma^2_{i,i,t} = \omega_i + \alpha_i \epsilon_{i,t-1}^2 + \beta_i \sigma^2_{i,i,t-1} \tag{3.19}$$

The OGARCH model reduces unknown parameters significantly and is widely used, but it does not work well when the correlation of time series is very small.

3.2.4 Generalized Orthogonal GARCH Model

The GOGARCH model was first proposed by (Van der Weide, 2002) as a natural generalization of the orthogonal GARCH (OGARCH). In OGARCH model, the matrix is assumed to be orthogonal which only contains a very small subset of all possible invertible matrices, while the orthogonal requirement is relaxed in GOGARCH model. (Van der Weide, 2002) argues that OGARCH often underestimate the correlations because of the orthogonal restriction.

Let y_t be the same time series as defined in OGARCH model and y_t is transformed to a linear combination of n uncorrelated factors ϵ_t as:

$$y_t = A\epsilon_t \tag{3.20}$$

Where A is $k \times k$ non-singular matrix. ϵ_t have unconditional unit variance Σ and $\Sigma = Var(\epsilon_t) = I_n$.

In this paper, we assume that each unobserved factor ϵ_t follows GARCH (1,1) model:

$$\sigma^2_{i,i,t} = (1 - \alpha_i - \beta_i) + \alpha_i \epsilon_{i,t-1}^2 + \beta_i \sigma^2_{i,i,t-1} \tag{3.21}$$

$$\Sigma_t = diag(\sigma^2_{1,1,t}, \ldots, \sigma^2_{n,n,t}) \tag{3.22}$$

Then the conditional covariance matrix of y_t is given by

$$H_t = A\Sigma_t A' \tag{3.23}$$

And the unconditional covariance matrix H of y_t is defined as $H = A\Sigma A = AA'$. Let P and Λ be orthonormal eigenvectors of H and a diagonal matrix with the corresponding
eigenvalues respectively. Then A is decomposed by

$$Z = PA^{1/2}L'$$

(3.24)

The parameters can be estimated by two-step approach proposed by (Van der Weide, 2002). First, H is estimated by sample variance of y_t and Λ can be estimated after the estimation of H. Then L, α and β can be estimated by maximizing a multivariate likelihood function.

3.3 Model Evaluation Measures

It is very difficult to evaluate the performances of different models because different investors have different concerns. Risk management managers care more about the extreme returns and volatility while portfolio managers may pay more attention to the influence of the correlations on these returns.

Suppose the return of a portfolio return $y_{p,t}$ at time t is given by

$$y_{p,t} = \mu_{p,t} + \epsilon_{p,t}$$

(3.25)

$$\mu_{p,t} = \sum_{i=1}^{n} \omega_{i,t} \mu_{i,t}$$

(3.26)

$$\sigma_{p,t}^2 = \omega H_t \omega'$$

(3.27)

Where $\mu_{p,t}$ and $\sigma_{p,t}^2$ are conditional mean and variance of the portfolio at time t respectively. $\epsilon_{p,t}$ is Gaussian white noise. H_t is conditional covariance matrix defined in section 2. $\omega_{i,t}$ is the portfolio weight of asset i at time t and $\sum_{i=1}^{n} \omega_{i,t} = 1$.

The conditional distribution of return for each asset is Gaussian as defined in Section 2 (Engle, 2002), then the portfolio return is also normally distributed because the multivariate normal distribution are closed under linear transformations; see (Pesaran and Zaffaroni, 2005), (Christoffersen, 2009). The portfolio Value-at-Risk (VaR) for 1 day horizon at α confidence level is

$$VaR_{t+1} = \mu_{p,t} + z_{\alpha} \sigma_{p,t}$$

(3.28)

Where z_{α} is the critical value of the corresponding quantile α. In this paper, we compute a 95% VaR using $z_{\alpha} = -1.65$ under normal distribution and we assume $\mu_{p,t}$
is constant and estimated by the sample mean of the portfolio return (Santos and Moura, 2012).

A number of papers (Plyakha et al., 2012) suggest that equally weighted portfolio strategy (called "1/N") consistently outperforms almost other optimization strategies. Therefore, we use an equally weighted portfolio in our analysis.

3.3.1 Mean Absolute Error

We first calculate some popular statistical loss functions in order to evaluate the out-of-sample forecasting ability of different multivariate models. The loss functions we choose to assess the performance of competing models in volatilities forecasting is mean absolute error (MAE) which is given as follows:

\[
MAE = \frac{1}{T} \sum_{t=1}^{T} |\hat{\sigma}_t^2 - h_t|
\]

Where \(h_t \) and \(\hat{\sigma}_t \) are predicted variance and actual volatility at time \(t \) respectively. Since the actual volatility \(\sigma \) is unobservable, we substitute of squared return \(y_t^2 \) to the actual conditional variance; see Sadorsky (2006) and Wei et al. (2010).

3.3.2 Model Confidence Set Approach

In order to select an optimal model with superior predictive ability in out-of-sample forecasting among these different multivariate models, we consider model confidence set (MCS) approach, the test introduced by Barndorff-Nielsen et al. (2009). The advantage of the MCS is that it performs a joint comparison across a full set of candidate models and does not specify a benchmark model.

Let us denote by \(d_{i,j,t} \) the loss deferential between models \(i \) and \(j \) at time \(t \). \(L_{i,t} \) is a loss function for model \(i \) at time \(t \), then the null hypothesis is given by

\[
H_0: E[d_{i,j,t}] = E[L_{i,t} - L_{j,t}] = 0, \forall j, i \in M
\]

Where \(M \subset M_0 \) and the starting set \(M_0 \) contain all the models.

The initial step sets \(M = M_0 \). MCS performs an iterative selection procedure. If the
null is rejected at a given confidence level α, the model with the worst performance is removed from the set at step k. Repeat this procedure until the null hypothesis cannot be rejected. In order to test H_0, we use the following t-statistic $t_{i,j}$:

$$t_{i,j} = \frac{\bar{d}_{i,j}}{\sqrt{\text{Var}(\bar{d}_{i,j})}}$$

(3.31)

$$\bar{d}_{i,j} = \frac{1}{T} \sum_{t=1}^{T} d_{i,j,t}$$

(3.32)

where $\text{Var}(\bar{d}_{i,j})$ is an estimate of the variance of average loss differential. p value of the test statistics and $\text{Var}(\bar{d}_{i,j})$ are determined by using a bootstrap approach.

The range test statistics $t_R = \max_{i,j \in M} |t_{i,j}|$ introduced by (Barndorff-Nielsen et al., 2009) have been used here, because it involves the fewest pairwise comparisons. The elimination rule for the range statistics is $e_M = \arg\max_{j \in M} \sup_{i \in M} t_{i,j}$. The entire procedure continues to repeat on the smaller set of models until the null hypothesis is not rejected.

In our analysis, the following MAE based loss functions (Patton, 2011) is used:

$$L_{mae} = \left| \hat{\sigma}_t^2 - h_t \right|$$

(3.33)

Where the squared return is considered an unbiased proxy of the actual conditional variance.

3.3.3 Backtesting

Value at Risk (VaR) is widely used as a measure of risk in portfolio risk management. When we consider conditional stochastic correlations, testing the conditional accuracy of the performance in forecasting becomes important. In order to analyze our results implied by different time-varying volatility models, we compute one-day ahead out-of-sample VaR and perform a backtesting analysis.

The conditional coverage test proposed by (Christoffersen, 1998) is a method to test if the VaR violations are independent and the average number of violations is correct conditional coverage. It is a combination of unconditional test and independence of
The violations test.

The sequence of VaR violations for model m are defined by an indicator function:

\[I_{t,m} = \begin{cases}
1 & \text{if } y_t < -VaR_{t,m}, \\
0 & \text{if else.}
\end{cases} \]

We start by introducing a simple unconditional test for the average probability of a VaR violation. The null hypothesis of correct unconditional coverage test is that \(\pi = \alpha \), where \(\pi \) is coverage rate in a particular model.

Suppose there are \(T_1 \) days in total with \(I_{t,m} = 1 \) in a sample period of \(T \), then we get the likelihood function

\[
L(\pi) = \pi^{T_1}(1 - \pi)^{T - T_1} \\
L(\alpha) = \alpha^{T_1}1 - \alpha^{T - T_1}
\]

(3.34)

(3.35)

By the likelihood ratio test we get

\[
LR_{uc} = -2\log(L(\alpha)/L(\pi)) \sim \chi^2
\]

Under the independence hypothesis, it is assumed that the violation sequence is described as a first order Markov sequence with transition probability matrix

\[
\pi = \begin{bmatrix}
\pi_{00} & \pi_{01} \\
\pi_{10} & \pi_{11}
\end{bmatrix}
\]

where \(\pi_{ij} = P(I_{t+1} = j|I_t = i) \) for \(i, j = 0, 1 \). Note that \(1 - \pi_{00} = \pi_{01} \) and \(1 - \pi_{10} = \pi_{11} \).

The null hypothesis independence test is assumed that \(\pi_{01} = \pi_{11} = \pi \). The likelihood function for a sample of \(T \) observations is

\[
L(\pi_1) = \pi_{01}^{T_{01}}(1 - \pi_{01})^{T_{00}}\pi_{11}^{T_{11}}(1 - \pi_{11})^{T_{10}}
\]

(3.36)

where \(T_{ij}, i, j = 0, 1 \) is the number of observations with a \(j \) following an \(i \).
Then the independence hypothesis is tested by using a likelihood ratio test

\[LR_{\text{ind}} = -2 \log \left(\frac{L(\pi)}{L(\pi_1)} \right) \sim \chi^2 \]

Finally, the likelihood ratio of conditional coverage test is \(L_{cc} = LR_{ac} + LR_{\text{ind}} \)

3.4 Empirical Results

The data used in this paper is the daily close prices of S&P 500 index and US Generic Government 10 Year Yield bond index. The sample period used here is Sep 9, 2002 through Sep 9, 2013, for a total of 2549 daily observations. We remove common holidays and weekends across these time series to minimize the possibility of inducing spurious correlation. In order to test the robust of the results, the models are applied to two subsample periods. The first period is financial crisis period (2008.4-2009.4) and the second is normal period (2012.10-2013.10). The historical daily returns of S&P 500 and bond index are shown in Figure 1.

![Figure 3.1: Daily return of S&P 500 and 10-yr Bond Index in 2002-2012](image)

First we estimate the dynamic of the conditional correlation for the full sample by using Riskmetrics EWMA, OGARCH, GOGARCH and DCC Garch models. We compare the implied conditional correlations in Figure 2. It shows that the estimated correlation of GOGARCH is quite stable which is around 0.5. However, the correlations estimated by the others are very volatile and EWMA model gives the most volatile correlation curve. The correlations under GOGARCH model have never dropped to 0.4 based on our calculation, even when the colorations estimated by the other model are negative. Furthermore, the correlation estimated by EWMA, OGARCH and DCC
Garch models all increase significantly around 2008 except GOGARCH. In Figure 2, a very sparse observation appears at the end of 2005 with mainly negative correlations in 2004-2006. A peak also appears in the conditional correlation estimated in 2008. The reason for the large positive correlations is an increase in uncertainty about the economic outlook in 2008 global financial crisis.

Figure 3.2: In sample estimation of stochastic correlation between S&P 500 and 10-yr Bond Index, 2002-2013

Now let us compare these models by investigating the forecasting performance of the 95% VaR for an equally weighted portfolio by using MAE, MCS and conditional coverage test. We also set the number of bootstrap samples l to 10,000 in order to obtain the distribution under the null. The critical value of LR_{cc} statistic with two degrees of freedom used throughout the backtesting process is 5.99 at 95% confidence level. (Jorion, 2001) suggests that 95% confidence level fits well for backtesting purposes. We construct MCS test at 10% confidence level using range statistics.

Table 1 illustrates some test statistics of conditional covariance estimated by EWMA, DCC GARCH (1,1), OGARCH (1,1) and GOGARCH (1,1) for the whole period. The best performance in forecasting under the in-sample analysis is OGARCH with the least MAE. GOGARCH has largest MAE because of the flat curve in Figure 2. The 10% MCS consist solely of OGARCH model and all these models except that EWMA fails the conditional coverage test for 95% VaR. OGARCH(1,1) outperforms the other models according to all evaluation criteria by in sample analysis.
3 Stochastic correlation in risk analytics: a financial perspective

<table>
<thead>
<tr>
<th></th>
<th>MAE</th>
<th>MCS</th>
<th>LR_{0.05}(0.95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWMA</td>
<td>4.13E-05</td>
<td>0.0096</td>
<td>0.945</td>
</tr>
<tr>
<td>DCC</td>
<td>4.10E-05</td>
<td>0.0834</td>
<td>5.805</td>
</tr>
<tr>
<td>OGARCH</td>
<td>3.62E-05</td>
<td>1</td>
<td>Inf</td>
</tr>
<tr>
<td>GOGARCH</td>
<td>4.22E-05</td>
<td>0.0834</td>
<td>10.6589</td>
</tr>
</tbody>
</table>

Table 3.1: Test statistics for in sample estimation for the whole period

3.4.1 First Subsample Period

In order to examine the time-varying nature of the conditional correlations, as well as to investigate the forecasting performance of these models in a turbulent period, we split the data sample into 2 subsamples. In the first subsample, we only consider the first 1777 observations in order to examine the performance of the models during 2008 financial crisis period. We split the subsample into two parts, 5.5-year estimation period which is used for in sample estimation and the subsequent 1.5-year out of sample forecast periods. We use a rolling window size of 1413 days to forecast the conditional covariance in financial crisis.

Figure 3 presents the forecasting performance of the four models mentioned above during 2008 financial crisis. Compared with Figure 2, the estimated correlation by GOGARCH is more volatile and the correlation reaches a peak in September and October 2008 when the subprime mortgage crisis hit its peak. Lehman Brothers filed the largest bankruptcy in U.S. history in Sep. 2008. The correlation curves are very close to each other always positive between April 2008 and April 2009.

Figure 3.3: 1-day ahead out-of-sample conditional correlation forecast between S&P 500 and 10-yr Bond Index in 2008-2009
Table 3 reports some test statistics of out of sample prediction performance of the 95% VaR for an equally weighted portfolio by using MAE, MCS and conditional coverage test. All these four models pass the conditional coverage test for 95% VaR during the financial crisis period and all these models are included in MSC except EWMA. That means, all these models perform well during the crisis period. We conclude OGARCH has the best performance based on all the test statistics in this period.

<table>
<thead>
<tr>
<th>Model</th>
<th>MAE</th>
<th>MCS</th>
<th>LR_{cc}(0.95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWMA</td>
<td>1.04E-04</td>
<td>0.0066</td>
<td>0.016</td>
</tr>
<tr>
<td>DCC</td>
<td>9.80E-05</td>
<td>0.0139</td>
<td>1.444</td>
</tr>
<tr>
<td>OGARCH</td>
<td>9.61E-05</td>
<td>1</td>
<td>1.119</td>
</tr>
<tr>
<td>GOGARCH</td>
<td>9.71E-05</td>
<td>0.0165</td>
<td>1.119</td>
</tr>
</tbody>
</table>

Table 3.2: Test statistics for out-of -sample forecast in 2008-2009

3.4.2 Second Subsample Period

In the second subsample, we estimate the parameters by using the 1777 observations in first 7 years and do one step ahead forecasts for the last 3 years with rolling window of 1777 days. We apply the proposed models to obtain out-of-sample one-step-ahead forecasts of the conditional covariance matrix of all assets.

From Figure 4 we can see the curves are overlapping and very close to each other. All the models pass conditional coverage test based on table 3. EWMA and DCC both have very volatile correlations. The 10% MCS consists OGARCH and GOGARCH. All the test statistics shown in Table 3 suggest that OGARCH and GOGARCH models both perform well and OGARCH achieves the best performance.

<table>
<thead>
<tr>
<th>Model</th>
<th>MAE</th>
<th>MCS</th>
<th>LR_{cc}(0.95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWMA</td>
<td>5.11E-05</td>
<td>0</td>
<td>0.0734</td>
</tr>
<tr>
<td>DCC</td>
<td>5.09E-05</td>
<td>0.001</td>
<td>1.0371</td>
</tr>
<tr>
<td>OGARCH</td>
<td>4.90E-05</td>
<td>1</td>
<td>0.0135</td>
</tr>
<tr>
<td>GOGARCH</td>
<td>4.92E-05</td>
<td>0.161</td>
<td>0.2164</td>
</tr>
</tbody>
</table>

Table 3.3: Test statistics for out-of -sample forecast in 2013
3 Stochastic correlation in risk analytics: a financial perspective

3.5 Conclusion

In this paper, we investigate the forecasting ability of four multivariate stochastic correlation models. These models are EWMA, DCC, OGARCH and GOGARCH in different market conditions. All these models have quite good forecasting performances during 2008 financial crisis and after 2008 crisis periods. GOGARCH and OGARCH models outperform the others. OGARCH achieves the best performance during these two sub-periods. During the stable market conditions, the out of sample conditional correlations are very different among these models. OGARCH model outperforms all the other three models under stable market conditions. We conclude that the out-of-sample forecast results show that OGARCH model has the best performance. The overall performance of multivariate GARCH models is better than EWMA.

Our empirical findings provide a better understanding of the dynamics in the correlations between stock index and bond yield, which can be applied by portfolio managers, risk management managers, policy makers and researchers. The use of OGARCH model in estimating time-varying correlations may reduce market risk and improve the performance of the portfolios.
Chapter 4

Portfolio Optimization in Hedge Funds by OGARCH and Markov Switching Model

4.1 Introduction

The hedge fund industry has grown rapidly in recent years and has become more and more important in alternative investment. According to the twelfth annual Alternative Investment Survey in 2014 by Deutsche Bank, hedge funds are estimated to manage assets of more than 3 trillion dollars by the end of 2014. The diversification benefits of hedge funds which allow investors to hold portfolios of other investment funds rather than investing directly in stocks, bonds and other securities are the main factor driving its success (Martellini et al., 2007). However, the 2008 financial crisis caused assets under management to fall sharply because of trading losses and the withdrawal of assets from funds by investors, resulting in a decline of assets by nearly 30% in 2008 (Maslakovic 2009).

The recent financial turbulence exposed and raised serious concerns about the optimal portfolio selection problem in hedge funds. Many papers have examined portfolio optimization in a hedge fund context. The structures of hedge fund return and covariance are crucial in portfolio optimization. The non-normal characteristics of hedge fund returns have been widely described in the literature. Kat and Brooks (2001) find that the hedge fund returns exhibit significant degrees of negative skewness and excess kurtosis. According to Getmansky et al. (2004) and Agarwal and Naik (2004) the returns of hedge fund return are not normal and serially correlated.
Meanwhile, a number of empirical studies show that the correlations of hedge fund return time series are time-varying. Billio et al. (2012) and Blazsek and Downarowicz (2008) have proposed more Regime-switching models to measure dynamic risk exposures of hedge funds. A non-linear Markov switching GARCH (MS-GARCH) model is proposed by Blazsek and Downarowicz (2013) to forecast idiosyncratic hedge fund return volatility. In the other direction, multivariate Garch models are employed to estimate the time-varying covariances/correlations of hedge fund returns. Giamouridis and Vrontos (2007) show that the optimal hedge fund portfolio constructed by dynamic covariance models has lower risk and higher out-of-sample risk-adjusted realized return. Harris and Mazibas (2010) provide further evidence that the use of multivariate GARCH models optimal portfolios selected by using multivariate GARCH models performance better than static models and also show that exponentially weighted moving average (EWMA) model improves the portfolio performance. Saunders et al. (2013) apply Markov-switching model in hedge fund portfolio optimization and show that Markov-switching model outperforms Black-Scholes Model and Gaussian Mixture Model.

In this paper, we extend the results of Saunders et al. (2013) to compare the optimal portfolio performances selected by the OGARCH model, the two-state Regime-Switching models and the EWMA Model, using daily observations of HFRX indices for the period 2003-2014. We first detect the exact 2008 financial crisis period by using the Regime-Switching model. Then the out-of-sample portfolio performance in the 2007-2009 financial crisis period and the whole sample period are analyzed based on the Sharpe ratio and the mean realized return. Another contribution of the paper is that we calculate the asset weight sensitivities in optimal Mean-Variance portfolio to the estimated parameters in OGARCH model.

The rest of this paper is organized as follows. Section 2 introduces the OGARCH model, the Regime-Switching models and the EWMA Model. The data set is described and the out-of-sample performance of optimal portfolios is analyzed in Section 3. Section 4 discusses the asset-weight sensitivities with respect to the parameters in the OGARCH Model. Section 5 concludes the paper.
4.2 Methodology

In this section, we first introduce the different models that can be used to estimate the mean and variance of hedge fund index returns. Then we describe the Mean-Variance portfolio optimization model used for optimal portfolio selection.

4.2.1 OGARCH Model

GARCH models have been applied to model volatility with a good success to capture some stylized facts of financial time series, such as fat tails and volatility clustering. One good extension from a univariate GARCH model to a multivariate case is the orthogonal GARCH (OGARCH) model introduced by Ding (1994), Alexander and Chibumba (1997) and Alexander (2000) which is based on univariate GARCH model and principal component analysis. Thereafter, OGARCH has become very popular to model the conditional covariance of financial time series. The OGARCH model is computationally simpler than the multivariate GARCH models for a large dimensional covariance matrix and has achieved outstanding accuracy in forecasting correlation.

In the OGARCH model, the observed time series are linearly transformed to a set of independent uncorrelated time series by using principal component analysis. The principal component approach is first used in a GARCH type context by Ding (1994). The OGARCH model by Alexander (2000) is described as follows.

Let Y_t be a multivariate time series of daily returns with mean zero on k assets with length T with columns y_1, \ldots, y_k. Then the $T \times K$ matrix X_t whose columns x_1, \ldots, x_k are given by the equation

$$x_t = \frac{y_t}{\sqrt{v_i}}$$

where $V = \text{diag}(v_1, \ldots, v_m)$ with v_i being the sample variance of the ith column of Y_t. Let L denote the matrix of eigenvectors of the population correlation of x_t and by $l_m = (l_{1,m}, \ldots, l_{k,m})$ its mth column. l_m is the $k \times 1$ eigenvector corresponding to the eigenvalue λ_m. The column labelling of L has been chosen so that $\lambda_1 > \lambda_2 > \cdots > \lambda_k$. Let D be the diagonal matrix of eigenvalues. The mth principal component of the system is defined by

$$p_m = x_1 l_{1,m} + x_2 l_{2,m} + \cdots + x_k l_{k,m}$$

If each vector of principal components p_m is placed as the columns of a $T \times k$ matrix
The principal component columns in modeled by GARCH(1,1)

\[p_t | \Psi_{t-1} \sim N(0, \Sigma_t) \]

\[p_{i,t} = \epsilon_{i,t} \]

\[\sigma_{i,t}^2 = \omega_i + \alpha_i \epsilon_{i,t-1}^2 + \beta_i \sigma_{i,t-1}^2 \]

where \(\Sigma_t \) is a diagonal matrix of the conditional variances of the principal components \(p, \Psi_{t-1} \) contains all the information available up to time t-1. The Conditional Covariance Matrix of \(X_n \) is \(D_t = L \Sigma_t L_n^T \) and the conditional covariance matrix of \(Y \) is given by

\[H_t = \sqrt{V} D_t \sqrt{V} \]

The estimation procedure in detail is illustrated in the following section.

Model Estimation in OGARCH

Let \(Y \) be a \(T \times k \) matrix of daily returns on \(k \) assets for \(T \) days. We obtain the daily returns from the daily closing prices by taking the natural log of the quotient of consecutive observations; in other words

\[y_i = \log \frac{P_{i+1}}{P_i} \]

where \(P_i \) is the daily closing price at time \(i \).

Step 1: We standardize the data into a \(T \times k \) matrix \(X \) with the estimated variance and mean for each \(y_i \) and find the correlation matrix \(XX' \).

Step 2: Then principal components analysis is performed on \(XX' \) to get the eigenvectors and the eigenvalues. We denote the matrix of eigenvectors by \(L \) and its mth column by \(l_m = (l_{1,m}, \cdots, l_{k,m}) \), the \(k \times 1 \) eigenvector corresponding to eigenvalue \(\lambda_m \). The column labeling has been chosen so that \(\lambda_1 > \lambda_2 > \cdots > \lambda_k \).

Step 3: We decide how many principal components we should use. If first n principal components is chosen, the mth principal component of the system is

\[p_m = x_1 l_{1,m} + x_2 l_{2,m} + \cdots + x_n l_{n,m} \]
where x_i is the ith column of X_n, the $T \times n$ matrix extracted from X. Then the principal components matrix P is given by a $T \times n$ matrix and we have $P = X_nW_n$.

Step 4: The conditional variance of the ith principal component p_i, $i = 1, \ldots, N$, is estimated by GARCH(1,1):

$$p_{i,t} = \epsilon_{i,t}$$

$$\sigma^2_{i,t} = \omega_i + \alpha_i \epsilon_{i,t-1}^2 + \beta_i \sigma^2_{i,t-1}$$

$$\Sigma_t = diag(\sigma^2_{1,t}, \ldots, \sigma^2_{n,t})$$

Step 5: The Conditional Covariance Matrix of X_n is $D_t = W_n \Sigma_t W_n^t$ and the conditional covariance matrix of Y is given by

$$H_t = \sqrt{V}D_t\sqrt{V}$$

where $W_n = L_n diag(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n})$.

The accuracy of the conditional covariance matrix V_t of the original returns, is determined by how many components n are selected to represent the system.

4.2.2 Markov Switching Model

Regime switching models have become very popular in financial modeling since the seminal contribution of [Hamilton (1989)](https://doi.org/10.1086/261459). Hamilton first proposed the Markov switching model (MSM) to model the real GNP in the US. Since then, these models have been widely used to model and forecast business cycles, foreign exchange rates and the volatility of financial time series.

Suppose the return of I hedge fund indices $i \in \{1, \ldots, I\}$ and one global stock index $i = 0$ follow a discrete-time Markov switching process. There exists an unobservable process $\{S_t\}_{t=1}^T$ with state space $\{0, 1\}$. Each index has a drift and volatility parameter. The log-returns of each index are given by $R^i_t = \mu^i_{S_t} + \sigma^i_{S_t} \epsilon^i_t$ where $(\epsilon^0_t, \ldots, \epsilon^I_t)$ is a multivariate normal with zero mean, unit standard deviation and correlation matrix C_{S_t}. Then the state process S is modelled as a time-homogeneous Markov chain with transition matrix

$$M = \begin{pmatrix} p & 1-p \\ 1-q & q \end{pmatrix}$$
where \(p = \mathbb{P}(S_t = 1|S_{t-1} = 0) \) and \(q = \mathbb{P}(S_t = 0|S_{t-1} = 1) \) with initial distribution of \(S \) as \((r, 1-r)\) with \(r = \mathbb{P}(S_1 = 0) \). The parameters in MSM is denoted by the vector: \(\theta^{MSM} = (p, q, \mu_0, \mu_1, \Sigma_0, \Sigma_1, r) \), for any \(p, q \in [0, 1], \mu_0, \mu_1 \in \mathbb{R}^{I+1}, \Sigma_0, \Sigma_1 \in \mathbb{R}^{(I+1) \times (I+1)}, r \in [0, 1] \).

The Gaussian mixture model (GMM) is considered as a special case of the Markov-switching model where state process \(S_t \) is an iid. random sequence. In this case, the transition probabilities are given by \(p = \mathbb{P}(S_t) = 1 - r \) and \(q = \mathbb{P}(S_t = 0) = r \) with \(p + q = 1 \). Therefore, the state process \(S \) is reduced from a Markov chain to a Bernoulli process. The transition matrix becomes

\[
M = \begin{pmatrix}
p & 1 - p \\
p & 1 - p \\
\end{pmatrix}
\]

The log-returns of each time series are iid. Gaussian mixture random vectors have two components with component weights \((p, 1-p)\). The parameters are denoted by \(\theta^{GMM} = (p, \mu_0, \mu_1, \Sigma_0, \Sigma_1) \). For the interested reader, the model estimation procedure is described as follows.

Model Estimation in Regime Switching

The state process \(S \) indicates whether the market is in a normal or distressed regime and it is not directly observable based on market data. Therefore it must be estimated indirectly using market observables as proxies to make inferences regarding its history and parameters.

We focus on the returns of the hedge fund indices, in particular, a major stock index as the crisis indicator to identify distressed market regimes. We use MSCI World Index as the crisis indicator rather than the indices of various hedge funds for two reasons. First, the MSCI World Index is the best representative of the market as a whole. The second reason is that the high frequent data of MSCI World Index is available for longer periods and more reliable than hedge fund data. The estimator obtained by the following steps:

Step 1: Estimate the model parameters for the asset’s log-returns for \(i = 0 \) and the parameters for the state process \(S \) when only historical data of the global stock index are considered. Then compute the most likely sequence of states.
Step 2: After the market is separated into two regimes by step 1, the mean and variance $\theta^{MSM}, \theta^{GMM}$ can be calculated. We follow the estimation procedure described in [Saunders et al., 2013]. The RHmm Package ([Taramasco et al., 2013]) and Matlab code by [Perlin, 2010] are used to finish the calculation.

4.2.3 EWMA Model

The exponentially weighted moving average (EWMA) models are very popular among market practitioners. The EWMA model assigns the highest weight to the latest observations and the least to the oldest observations in the volatility estimate.

The variance Σ_t in mutivariate EWMA model is defined as

$$\Sigma_t = (1 - \lambda)\Sigma_{t-1} + \lambda y_{t-1}'y_{t-1}$$

For each individual element, it is given by

$$\sigma^2_{i,j,t} = (1 - \lambda)\sigma_{i,t-1}\sigma_{j,t-1} + \lambda y_{i,t-1}y_{j,t-1}$$

where λ is the decay factor which determines the importance of historical observations used for estimating the covariance matrix. The value of the decay factor depends on the sample size and varies by asset class. [J.P. Morgan (1996)] suggests that a decay factor of 0.94 is used for the daily data set.

Given the decay factor and initial value Σ_0, it is very easy to forecast the conditional covariance matrix. Σ_0 is usually the full sample covariance matrix, which is defined as

$$\Sigma_0 = \frac{1}{T-1} \sum_{t=1}^{T} (y_t - \bar{y})'(y_t - \bar{y})$$

The EWMA model is very easy to implement for a larger number of assets since the conditional covariance is always semi-definite. The forecast of the conditional covariance is also straightforward. The downside of this model is a lack of firm statistical basis and also the need to estimate the decay factor.
4.2.4 Portfolio Optimization Model

The optimal portfolio is selected by the mean variance model (MV) introduced by Markowitz (1952). Suppose that the portfolio consists of \(k \) assets with the return \(r_{i,t} \) for asset \(i \) at time \(t \) and \(R_t = (r_{1,t}, r_{2,t}, ..., r_{k,t}) \). Let \(w_{i,t} \) be the weight of the portfolio invested in asset \(i \) at time \(t \) and \(w_t \in \mathbb{R}^n \) is the vector weight of the portfolio at time \(t \). Given a risk aversion coefficient \(\lambda \), the optimal portfolio weight \(w_t \) is selected at the beginning of time \(t \) by:

\[
\min \left\{ \lambda w_t^T \text{Var}_{t-1}(R_t) w_t - w_t^T \text{E}_{t-1}(R_{n,t}) \right\} \tag{4.1}
\]

subject to

\[
w_t^T 1 = 1 \tag{4.2}
\]

where \(\text{Var}_{t-1}(R_t) \) is the conditional covariance of the asset returns at \(t \), \(\text{E}_{t-1}(R_{n,t}) \) is the conditional expected returns at \(t \). In the following example, the same risk aversion coefficient \(\lambda = 11.39 \) is used.

4.3 Empirical Results

This section presents the results of the performance of the optimal portfolios selected by using OGARCH, MSM, GMM and EWMA models in an out-of-sample period. The weight sensitivities with respect to the parameters in the OGARCH model are also analyzed.

The daily observations of HFRX indices for the period from April 1, 2003 to May 12, 2014 and MSCI World index from January 1, 1982 to May 12, 2014 are used to estimate the models and test the out-of-sample performance. The MSCI World Index time series is used to identify crisis period in MSM and GMM models. Four HFRX indices are used to construct the optimal portfolio: Equity Market Neutral (EMN), Equity Hedge (EH), Macro (M) and Merger Arbitrage (MA). These fund indices are the same as the paper (Saunders et al., 2013) for details.

First we use the daily returns of MSCI World Index over 30 year period (Jan.1, 1982 to May 12, 2014) to identify the crisis. The period (32-90) is identified as the financial crisis period (7/17/2007 to 11/2/2009) by using Viterbi path.
The parameters are estimated based on the data available in-sample-period (4/1/2003 to 4/7/2006) and the first optimal portfolio is selected on March 29, 2006. The portfolio is rebalanced every two weeks after the first investment period based on the information available up to the investment date. The realized portfolio returns based on the different models in this out-of-sample period are reported in Figure 1. As shown in Figure 1, the portfolio returns are very volatile during the financial crisis period and the portfolio returns selected by OGARCH is less volatile than the others.

Figure 4.1: 10-day realized returns of the optimal portfolio selected by different models.

In Figures 2-5, we illustrate the optimal weight allocations among EMN, EH, M and MA during the out-of-sample period based on OGARCH, EWMA, MSM and GMM. As shown in Figures 2 and 5, MSM and GMM investors put largest weights in EMN and EH during financial crisis period. More wealth is invested in EH by MSM and GMM before 2008. Figure 4 shows that EWMA investor mainly invest in MA over the entire out-of-sample period. The average weight allocated in MA by EWMA investor...
during the financial crisis is more than 67%, while GMM investor puts almost 50% of the wealth in EMN (see Table 1). Since MA fund index has the best performance during financial crisis period, so OGARH and EWMA has better cumulative returns during this period. After financial crisis, all the investors except GMM allocate more wealth on EH. After 2011, EWMA investor invests all the wealth in MA.

Figure 4.3: OGARCH: optimal weight of each asset allocated in Portfolio Allocation.

Figure 4.4: EWMA: optimal weight of each asset allocated in Portfolio Allocation.

Figure 4.5: GMM: optimal weight of each asset allocated in Portfolio Allocation.
Table 4.1: Optimal portfolio allocation for financial crises periods 32-90. The second row gives the average 10-day returns of each fund index.

Table 2 presents descriptive statistics for each optimal portfolio returns selected by using EWMA, GMM, MSM and OGARCH for the period April 2006 to May 2014. For 10-day returns of each portfolio, mean, standard deviation, 5% quantile, minimum and Sharpe ratio are reported. As can be seen from Table 2, OGARCH has the lowest risk because the standard deviation in the 5% quantile and worst case return are the smallest. EWMA and OGARCH models outperform from regime switching models across all the measures. Based on the Sharpe ratio, the optimal portfolio selected by OGARCH model has the highest risk-adjusted return. Tables 3 and 4 also show that the optimal portfolio selected by OGARCH model has the best performance during both the financial crisis period and normal period.

Table 4.2: Statistics of realized portfolio returns for the out-of-sample period. Average 10-day portfolio return(Mean), standard deviation(St. Dev), worst-case return(Min) are in percentages.

Table 4.3: Statistics of realized portfolio returns for crisis periods(32-90). Average 10-day portfolio return(Mean), standard deviation(St. Dev), 5% quantile, worst-case return(Min) and Sharpe ratio are in percentages.
Table 4.4: Statistics of realized portfolio returns for normal periods (145-204). Average 10-day portfolio return (Mean), standard deviation (St. Dev), 5% quantile, worst-case return (Min) and Sharpe ratio are in percentages.

<table>
<thead>
<tr>
<th></th>
<th>EWMA</th>
<th>GMM</th>
<th>MSM</th>
<th>OGARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (%)</td>
<td>0.10</td>
<td>0.03</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>St. Dev (%)</td>
<td>0.36</td>
<td>0.48</td>
<td>0.51</td>
<td>0.35</td>
</tr>
<tr>
<td>5% Quantile</td>
<td>-0.42</td>
<td>-0.71</td>
<td>-0.64</td>
<td>-0.42</td>
</tr>
<tr>
<td>Min (%)</td>
<td>-0.96</td>
<td>-2.27</td>
<td>-2.42</td>
<td>-0.92</td>
</tr>
<tr>
<td>Sharpe Ratio (%)</td>
<td>0.271</td>
<td>0.068</td>
<td>0.118</td>
<td>0.273</td>
</tr>
</tbody>
</table>

4.4 Asset Weight Sensitivities

It is worth investigating the weight sensitivities of the optimal portfolio with respect to the parameters in OGARCH. Chopra and Ziemba (1993) show that even small changes to the estimated expected returns or variance can produce vastly different optimal portfolios selected by Mean-variance model. The sensitivities analysis can help to understand the relationship between the input estimates and output optimal portfolio. The weight sensitivities measure the weight change of each asset in the optimal portfolio to the change of the parameters in the OGARCH model. Risk managers would want to use sensitivity analysis to adjust the optimal portfolio weights to keep the portfolio optimized. Another application is that it could be used to evaluate the impact that each individual or group of assets has on the portfolio variance. This would help risk managers find the major sources of risk and allow them to evaluate the estimation errors.

The asset weight sensitivities can be inferred and approximated using finite differences. For example, we try to calculate the value of the weight sensitivities of $\alpha = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$. First we find the estimated parameters for $\alpha = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ and get the optimal weights of each asset $w(\alpha)$. Then we take the $\Delta = 0.01\alpha$ and find the new weight $w(\alpha + \Delta)$ when α increases by 1%. The weight sensitivities with respect to α can be approximated by $\frac{w(\alpha+\Delta)-w(\alpha)}{\Delta}$, where w is the optimal weight. The results by using both methods are the same as shown in Table 5 and 6.

4.4.1 Explicit Calculation

Alternatively, the value of sensitivities can be calculated directly by differentiating the optimal conditions. We assume that the portfolio is optimized based on the Mean-Variance model by Markowitz (1952) and short selling is allowed. If we want to
know the rate of change in the weights with respect to the estimated parameters, then we need to calculate the sensitivities. To simply the notation, let

\[C_t = \text{Var}_{t-1}(R_t) = \text{Var}[R_t|\Psi_{t-1}] = H_t \]

\[\mu_n = E_{t-1}(R_{n,t}) = E[R_t|\Psi_{t-1}] = W(\mu_1, ..., \mu_k)^T \]

Let \(\theta_i = (\mu_i, \gamma_i, \alpha_i, \beta_i) \), then the partial derivative of the variance for each asset \(i \) is

\[\frac{\partial \sigma^2_{i,t}}{\partial \theta_i} = \begin{bmatrix} \frac{\partial \sigma^2_{i,t}}{\partial \mu_i} & \frac{\partial \sigma^2_{i,t}}{\partial \gamma_i} & \frac{\partial \sigma^2_{i,t}}{\partial \alpha_i} & \frac{\partial \sigma^2_{i,t}}{\partial \beta_i} \end{bmatrix} = \begin{bmatrix} -2\alpha_i \epsilon_{i,t-1} & 1 & \epsilon_{i,t-1}^2 & \sigma_{i,t-1}^2 \end{bmatrix} + \beta \frac{\partial \sigma^2_{i,t-1}}{\partial \theta_i} \]

Given the Lagrange multiplier \(\rho \), the optimal condition by solving the Lagrangian for the constraint in Markowitz’s models given by

\[2\lambda C_t w_t - \mu_n + \rho 1 = 0 \] \hfill (4.3)
\[w^T 1 = 1 \] \hfill (4.4)

Because the Lagrange multiplier and the optimal weight both depend on the parameter \(\theta \), we differentiate equation 6 and 7

\[2\lambda C \nabla_\theta w + 2\lambda \frac{\partial C}{\partial \theta} w - \frac{\partial \mu_n}{\partial \theta} + \frac{\partial \rho}{\partial \theta} 1 = 0 \] \hfill (4.5)
\[1^T \nabla_\theta w = 0 \] \hfill (4.6)

We take the parameters \(\mu_1, \gamma_1, \alpha_1 \) and \(\beta_1 \) for example and the derivatives of the other parameters can be solved in the same way. Given that there are four assets in this
portfolio, we let \(\mu_t = (\mu_1, \mu_2, \mu_3, \mu_4) \) and \(\Sigma_t = \text{diag}(\sigma_{1,t}^2, ..., \sigma_{4,t}^2) \)

\[
\frac{\partial \mu_n}{\partial \mu_1} = W, \frac{\partial \mu_1}{\partial \mu_1} = W \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\]

\[
\frac{\partial \mu_n}{\partial \gamma_1} = \frac{\partial \mu_n}{\partial \alpha_1} = \frac{\partial \mu_n}{\partial \beta_1} = 0
\]

\[
\frac{\partial C_t}{\partial \mu_1} = W \begin{pmatrix} -2\alpha_1 \epsilon_{1,t-1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \beta \frac{\partial C_{t-1}}{\partial \mu_1} \right) W^T
\]

\[
\frac{\partial C_t}{\partial \gamma_1} = W \left(\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \beta \frac{\partial C_{t-1}}{\partial \mu_1} \right) W^T
\]

\[
\frac{\partial C_t}{\partial \alpha_1} = W \left(\begin{bmatrix} \epsilon_{1,t-1}^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \beta \frac{\partial C_{t-1}}{\partial \mu_1} \right) W^T
\]

\[
\frac{\partial C_t}{\partial \beta_1} = W \left(\begin{bmatrix} \sigma_{1,t-1}^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \beta \frac{\partial C_{t-1}}{\partial \mu_1} \right) W^T
\]

In order to compare the sensitivities in normal and crisis periods, we consider both Period 60(normal) and 180(crisis) respectively.

The values of weight sensitivities are given in Table 5 in financial crisis period (period 60). The asset weight is very sensitive to the changes of the estimated parameters \(\beta, \gamma \) and \(\alpha \). The different sign of the sensitivities shows that different assets respond differently to the changes. For example, when \(\gamma \) increases, the weight of EH and M decrease while the weight of EMN and MA increase. The weight sensitivities of EH, EMN
and MA are largest with respect to γ. That is, the optimal weights are very sensitive to γ. When the parameters are estimated, we should pay attention to estimation errors.

Compared with the asset weight sensitivities in normal economic conditions shown in Table 6, we conclude that the weights of EMN and MA are more sensitive to the parameters during the financial crisis period. This is reasonable because the optimal weights are more volatile in times of financial crisis. The weight sensitivities are zero for EMN because the weight of EMN during this period is 0 and does not change at all.

<table>
<thead>
<tr>
<th>$\gamma - \Delta$</th>
<th>EH(%)</th>
<th>EMN (%)</th>
<th>M(%)</th>
<th>MA(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>0.0786</td>
<td>0.0155</td>
<td>0.4926</td>
<td>0.4133</td>
</tr>
<tr>
<td>$\gamma + \Delta$</td>
<td>0.0783</td>
<td>0.0157</td>
<td>0.4926</td>
<td>0.4134</td>
</tr>
<tr>
<td>$\gamma - w(\gamma - \Delta)$</td>
<td>-0.8266</td>
<td>6.0328</td>
<td>-0.0062</td>
<td>3.8991</td>
</tr>
<tr>
<td>$\gamma + \Delta - w(\gamma)$</td>
<td>-0.8244</td>
<td>6.0114</td>
<td>-0.0053</td>
<td>3.8769</td>
</tr>
<tr>
<td>$\alpha - \Delta$</td>
<td>0.0785</td>
<td>0.0156</td>
<td>0.4926</td>
<td>0.4133</td>
</tr>
<tr>
<td>α</td>
<td>0.0783</td>
<td>0.0157</td>
<td>0.4926</td>
<td>0.4134</td>
</tr>
<tr>
<td>$\alpha + \Delta$</td>
<td>0.0781</td>
<td>0.0158</td>
<td>0.4927</td>
<td>0.4134</td>
</tr>
<tr>
<td>$\alpha - w(\alpha - \Delta)$</td>
<td>-0.5861</td>
<td>0.6677</td>
<td>0.1303</td>
<td>0.5240</td>
</tr>
<tr>
<td>$\alpha + \Delta - w(\alpha)$</td>
<td>-0.5853</td>
<td>0.6658</td>
<td>0.1303</td>
<td>0.5239</td>
</tr>
<tr>
<td>$\beta - \Delta$</td>
<td>0.0765</td>
<td>0.0170</td>
<td>0.4928</td>
<td>0.4138</td>
</tr>
<tr>
<td>β</td>
<td>0.0783</td>
<td>0.0157</td>
<td>0.4926</td>
<td>0.4134</td>
</tr>
<tr>
<td>$\beta + \Delta$</td>
<td>0.0801</td>
<td>0.0145</td>
<td>0.4925</td>
<td>0.4130</td>
</tr>
<tr>
<td>$\beta - w(\beta - \Delta)$</td>
<td>0.1941</td>
<td>-0.1259</td>
<td>-0.0185</td>
<td>-0.0416</td>
</tr>
<tr>
<td>$\beta + \Delta - w(\beta)$</td>
<td>0.1865</td>
<td>-0.1258</td>
<td>-0.0154</td>
<td>-0.0401</td>
</tr>
</tbody>
</table>

Table 4.5: Weight sensitivities for selected values of OGARCH parameters in period 60. The numbers in each column are in percentage. The second row gives the optimal weight of each fund index when gamma equals $\gamma - \Delta$

<table>
<thead>
<tr>
<th>$\gamma - w(\gamma - \Delta)$</th>
<th>EH(%)</th>
<th>EMN (%)</th>
<th>M(%)</th>
<th>MA(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>0.0786</td>
<td>0.0155</td>
<td>0.4926</td>
<td>0.4133</td>
</tr>
<tr>
<td>$\gamma + \Delta$</td>
<td>0.0783</td>
<td>0.0157</td>
<td>0.4926</td>
<td>0.4134</td>
</tr>
<tr>
<td>$\alpha - \Delta$</td>
<td>0.0785</td>
<td>0.0156</td>
<td>0.4926</td>
<td>0.4133</td>
</tr>
<tr>
<td>α</td>
<td>0.0783</td>
<td>0.0157</td>
<td>0.4926</td>
<td>0.4134</td>
</tr>
<tr>
<td>$\alpha + \Delta$</td>
<td>0.0781</td>
<td>0.0158</td>
<td>0.4927</td>
<td>0.4134</td>
</tr>
<tr>
<td>$\beta - \Delta$</td>
<td>0.0765</td>
<td>0.0170</td>
<td>0.4928</td>
<td>0.4138</td>
</tr>
<tr>
<td>β</td>
<td>0.0783</td>
<td>0.0157</td>
<td>0.4926</td>
<td>0.4134</td>
</tr>
<tr>
<td>$\beta + \Delta$</td>
<td>0.0801</td>
<td>0.0145</td>
<td>0.4925</td>
<td>0.4130</td>
</tr>
<tr>
<td>$\beta - w(\beta - \Delta)$</td>
<td>0.1941</td>
<td>-0.1259</td>
<td>-0.0185</td>
<td>-0.0416</td>
</tr>
<tr>
<td>$\beta + \Delta - w(\beta)$</td>
<td>0.2099</td>
<td>-0.1258</td>
<td>-0.0154</td>
<td>-0.0401</td>
</tr>
</tbody>
</table>

Table 4.6: Weight sensitivities for selected values of OGARCH parameters in period 180. All the numbers are in percentage.
4.5 Conclusion

In this paper, we have compared the out-of-sample performances of the optimal portfolios selected by OGARCH, two-state Regime-Switching models (MSM and GMM) and the EWMA Model by using four fund indices during the period 2003-2014. The mean and variance of each fund index are estimated by the four models and then Mean-Variance portfolio optimization model is applied to find the optimal weights. We have found that the optimal portfolio selected by OGARCH model outperforms EWM, MSM and GMM models with respect to the risk and returns during the whole investment period. The portfolio obtained by using EWMA model also has better return and smaller risk than the two Regime-Switching models.

We have also examined the weight sensitivities of the optimal portfolio with respect to the estimated parameters in OGARCH model. The numerical results show that the weight is very sensitive to the parameters in financial crisis period. This would indicate that the estimation errors are also important when the mean and variance are estimated in Mean-Variance portfolio optimization.
Chapter 5

Portfolio Optimization Under OGARCH with GH Skewed t Distribution

5.1 Introduction

The Mean-Variance portfolio optimization model proposed by Markowitz (1952) has become the foundation of modern portfolio theory. It assumes that asset returns follow the multivariate Gaussian distribution with constant parameters. It takes standard deviation as a risk measure, which treats both upside and downside payoffs symmetrically. Chapter 2 shows that the distribution of crude oil is skewed and asymmetric with fat-tail and the volatility of the asset is time-varying. Chapter 3 provides further evidence that financial time series have asymmetric returns and the correlation between the time series is very volatile, especially in the financial crisis period.

In order to model skewness in conditional distributions of financial time series, Hansen (1994) proposed the first skewed extension to student t. Aas (2006) show that the generalized hyperbolic (GH) skew student t-distribution fit the financial returns better than the other distributions.

Value-at-Risk (VaR) has been widely used as a market risk measure by practitioners. Under the Basel II Accord, banks are required to use VaR in calculating minimum capital requirements for market risk. Motivated by these facts, the addition of VaR constraint to mean-variance model has been studied by many researchers. Alexander
and Baptista (2004) analyze the impact of adding VaR constraint to a single period mean-variance model with a VaR constraint by assuming that asset returns have a multinormal distribution. Alexander et al. (2007) then examine the impact of VaR and CVaR constraints in the MeanVariance portfolio optimization model when the asset returns have a discrete distribution with finitely many jump points. Bauwens (2005) combine a new class of multivariate skew-Student distributions with a multivariate generalized autoregressive conditional heteroscedasticity (GARCH) model. The empirical result shows that multivariate skew-Student improves the performances of VaR forecasts for several portfolios. Hu and Kercheval (2010) also show that the skewed t distribution fits the equity return better and exam the efficient frontiers computed from the mean-VaR and mean-CVaR portfolio optimization models. Liu (2012) introduces a modified version of the mean-CVaR optimization model by filtering stock returns with CCC-GARCH and skewed t distributions. Our work differs from these papers in that we filter the fund returns by OGARCH model.

The safety-first model is first introduced by Roy (1952) and the model is extended by Telser (1955) and Kataoka (1963). In recent years, many safety-first models have been developed and discussed due to the growing practical relevance of downside risk. Chiu and Li (2012) develop a modified safety-first model and have studied its application in financial risk management of disastrous events. Norkin and Boyko (2012) have improved the safety-first model by introducing one-sided threshold risk measures. The Kataoka’s safety-first model with constraint of mean return is studied by Ding and Zhang (2009).

The first contribution of this paper is that we filter the data by the orthogonal GARCH model with the combination of multivariate GH skew t distributions. The second contribution is that we derive an analytic solution to the enhanced safety-first model with standard deviation constraint. We also give the analytic solution to the Mean-Variance optimization problem in terms of parameters under GH skewed t and OGARCH model. Furthermore, we compare the optimal portfolio performances under Mean-CVaR, enhanced safety-first and classic Mean-Variance model.

The remainder of this paper is organized as follows. In Section 2 we introduce the Orthogonal Garch model (O-GARCH) and Generalized Hyperbolic skewed t distribution (GH skewed t). Then, we present the Mean-Variance portfolio optimization
model, enhanced safety-first model and Mean-CVaR model in Section 3. Section 4 describes the parameter estimation method, the data used in the paper and summary statistics of the estimated parameters. In Section 5, we compare the optimal portfolio performances under Mean-CVaR, enhanced safety-first and classic Mean-Variance model. Section 6 concludes the chapter.

5.2 Model

Let \(Y \) be a \(T \times k \) matrix of daily returns and \(Y \) is obtained by taking the natural log of the quotient of consecutive the daily closing prices; in other words, \(y_{i,t+1} = \log \frac{P_{i,t+1}}{P_{i,t}} \) where \(P_t \) is daily closing price at time \(t \).

Assume that

\[
Y_t = \mu + H_t^{\frac{1}{2}} z_t \tag{5.1}
\]

where \(Y_t, \mu \in \mathbb{R}^k \) for \(t = 1, \ldots, T, \ i = 1, \ldots, k \) and \(H_t \) is the conditional covariance matrix and we assume \(z_t \) follows a generalized hyperbolic (GH) skewed t distribution.

5.2.1 Generalized hyperbolic distributions

The generalized hyperbolic (GH) distribution was first introduced by Barndorff-Nielsen (1977) and the skewed t distribution is a special case of GH distribution with fat tails and asymmetry characteristics. In this section, the GH distributions can be defined by using mean-variance mixture method as presented in McNeil et al. (2010).

Definition 1. Normal Mean-Variance Mixture Distribution The random vector \(z_t \) has a \(k \) dimensional multivariate normal mean-variance mixture if

\[
z_t \overset{i.i.d.}{\sim} \mu + \gamma W + \sqrt{W} A Z_t \tag{5.2}
\]

Where \(Z \sim N_k(0, I_d) \) is standard \(d \)-dimension multivariate normal distribution. \(W \geq 0 \) is a nonnegative, scalar-valued random variable and independent of \(Z \). \(\mu \in \mathbb{R}^k \), \(\gamma \in \mathbb{R}^k \) and \(A \in \mathbb{R}^{k \times d} \).

It follows from equation (5.2) that

\[
z_t | W \sim N(\mu + \gamma W, W \Sigma)
\]
where $\Sigma = AA'$ and it is easy to calculate

$$E[z_t] = E[E[z_t|W] = \mu_z + \gamma E[W] \quad (5.3)$$

$$Cov[z_t] = E[Cov[z_t|W]] + Cov[E[z_t|W]] = E[W]\Sigma + Var[W]\gamma' \quad (5.4)$$

Definition 2. Modified Bessel Function The modified Bessel function of the second kind with index λ is defined as given by Barndorff-Nielsen and Blaesild (1981):

$$K_\lambda(x) = \frac{1}{2} \int_0^\infty y^{\lambda-1}e^{-\frac{x}{2}(y+\psi^-1)}dy, \quad x > 0$$

If $\lambda > 0$, the following asymptotic property of K_λ is satisfied

$$K_\lambda(x) \sim \Gamma(\lambda)2^{\lambda-1}x^{-\lambda} \quad \text{as } x \to 0^+$$

Where $\Gamma(x)$ is the gamma function.

The modified Bessel function also has the following important properties

$$K_\lambda(x) = K_{-\lambda}(x)$$

The GH skewed t distribution can be represented as a mean-variance mixture where the mixing variable W follows the generalized inverse Gaussian (GIG) distribution.

Definition 3. The Generalized Inverse Gaussian Distribution (GIG). A random variable X has a generalized inverse Gaussian (GIG) distribution, $X \sim GIG(\lambda, \chi, \psi)$ if its density is given by

$$f(x) = \frac{\left(\sqrt{\chi/\psi}\right)^\lambda}{2K_\lambda(\sqrt{\chi\psi})}x^{\lambda-1}e^{-\frac{1}{2}(\chi^{-1}+\psi)x} \quad (5.5)$$

K_λ is the modified Bessel function of the third kind with index λ and the domain of the parameters (λ, χ, ψ) is given by

$$\chi > 0, \psi \geq 0 \quad \text{if } \lambda < 0$$

$$\chi > 0, \psi > 0 \quad \text{if } \lambda = 0$$

$$\chi \geq 0, \psi > 0 \quad \text{if } \lambda > 0$$

Definition 4. The Generalized Hyperbolic Distribution (GH) A random vector X follows the generalized hyperbolic distribution (GH), $X \sim GH_k(\lambda, \chi, \psi, \mu_z, \Sigma, \gamma)$ if X can be represented as mean-variance mixture where the mixing variable W fol-
lows the generalized inverse Gaussian (GIG) distribution, \(W \sim \text{GIG}(\lambda, \chi, \psi) \) and its density is given by

\[
f(x) = c \frac{K_{\lambda - \frac{1}{2}} \left(\sqrt{\chi + (x - \mu_z)^T \Sigma^{-1} (x - \mu_z)} (\psi + \gamma^T \Sigma^{-1} \gamma) \right) e^{(x - \mu_z)^T \Sigma^{-1} \gamma}}{\left(\sqrt{\chi + (x - \mu_z)^T \Sigma^{-1} (x - \mu_z)} (\psi + \gamma^T \Sigma^{-1} \gamma) \right)^{\frac{3}{2} - \lambda}}
\]

where the constant \(c \) is given by

\[
c = \frac{(\sqrt{\chi \psi})^{-\lambda} \psi^\lambda (\psi + \gamma^T \Sigma^{-1} \gamma)^{\frac{3}{2} - \lambda}}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{d}{2}} K_\lambda(\sqrt{\chi \psi})}
\]

where \(|\Sigma| \) is the determinant of \(\Sigma \).

The characteristic function of the GH random variable \(X \sim \text{GH}_k(\lambda, \chi, \psi, \mu_z, \Sigma, \gamma) \) is obtained from the mean-variance mixture definition

\[
\phi_X(t) = E[e^{it'X}] = E[E[e^{it'X}|W]] = E[e^{it'\mu_z + it'\gamma W - \frac{1}{2} W t' \Sigma t}] = e^{it'\mu_z} e^{i(t'\gamma - \frac{1}{2} t' \Sigma t) W}
\]

Suppose the density function of \(W \) is \(H \) and the Laplace-Stieltjes transform of \(H \) is defined by

\[
\hat{H}(\theta) = E[e^{-\theta W}] = \int_0^\infty e^{-\theta u} dH(u)
\]

Then

\[
\phi_X(t) = e^{it'\mu_z} \hat{H}(\frac{1}{2} t' \Sigma t - it' \gamma))
\]

An important property of the GH class is that it is closed under linear operations.

Proposition 1. If \(X \sim \text{GH}_k(\lambda, \chi, \psi, \mu_z, \Sigma, \gamma) \), and \(Y = BX + b \) where \(B \in \mathbb{R}^{dxk} \) and \(b \in \mathbb{R}^d \), then \(Y \sim \text{GH}_d(\lambda, \chi, \psi, B \mu_z + b, B \Sigma B', B \gamma) \).
Proof.

\[
\phi_Y(t) = E[e^{it'(BX + b)}] \\
= e^{it'b}E[e^{it'X}] \\
= e^{it'b}E[e^{it'B\mu + it'\Sigma B'\gamma W - \frac{1}{2}W'B\Sigma B't}] \\
= e^{it'b}e^{it'B\mu}e^{(it'B\gamma - \frac{1}{2}t'B\Sigma B't)W} \\
= e^{it'(B\mu + b)}e^{(it'B\gamma - \frac{1}{2}t'B\Sigma B't)W} \\
= e^{it'(B\mu + b)}\bar{H}(-it'B\gamma + \frac{1}{2}t'B\Sigma B't)
\]

\[\square\]

More specially, if \(B = w' = (w_1, w_2, \cdots, w_k)' \) and \(b = 0 \), then \(y = (w_1, w_2, \cdots, w_k)'X \) is

\[y \sim GH_1(\lambda, \chi, \psi, w'\mu_z, w'SW, w'\gamma) \]

The generalized hyperbolic skewed t distribution is a special case of generalized hyperbolic distribution. Suppose \(W \sim GIG(\lambda, \chi, \psi) \). If \(\psi = 0, \chi = \nu, \lambda = -\frac{1}{2}\nu \) for \(\nu > 2 \), then \(W \) follows an inverse gamma distribution (McNeil et al., 2015)

Definition 5. **Gamma distribution**

The random variable \(X \) has a gamma distribution, \(X \sim Gamma(\alpha, \beta) \), if its density is

\[f(x) = \frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x} \quad x > 0, \quad \alpha > 0, \quad \beta > 0 \]

Moreover, \(\frac{1}{X} \) has an inverse gamma distribution, \(\frac{1}{X} \sim Igamma(\alpha, \frac{1}{\beta}) \) with the density

\[f(x) = \frac{\frac{1}{\beta}^\alpha}{\Gamma(\alpha)}x^{-(\alpha-1)}e^{-\frac{1}{\beta} x} \quad x > 0, \quad \alpha > 0, \quad \beta > 0 \] \hspace{1cm} (5.6)

The moments of \(X \sim Gamma(\alpha, \beta) \) given \(\alpha > n \) is

\[E[x^n] = \frac{\beta^n}{(\alpha - 1) \cdots (\alpha - n)} \] \hspace{1cm} (5.7)

Definition 6. **GH Skewed t Distribution**

The random variable \(X \) has a generalized hyperbolic skewed t distribution, \(X Skewt \sim (\nu, \mu_z, \Sigma, \gamma) \) if \(W \sim Igamma(\frac{\nu}{2}, \frac{\nu}{2}) \) and \(\nu > 2 \). The multivariate joint density is

\[
f(x) = cK_{\frac{\nu + k}{2}}\left(\sqrt{(\nu + (x - \mu_z)^T\Sigma^{-1}(x - \mu_z)\gamma^T\Sigma^{-1}\gamma)}e^{(x - \mu_z)^T\Sigma^{-1}}\right)\left(\sqrt{(\nu + (x - \mu_z)^T\Sigma^{-1}(x - \mu_z)\gamma^T\Sigma^{-1}\gamma)}\right)^{-\frac{\nu + k}{2}} + 1 + \frac{(x - \mu_z)^T\Sigma^{-1}(x - \mu_z)}{\nu} - \frac{\nu}{2} + \frac{\nu}{2} \]

62
where the constant c is given by

$$c = \frac{2^{1-k/2}}{\Gamma(\frac{\nu}{2})(\pi + \nu)^{\frac{k}{2}}|\Sigma|^{\frac{1}{2}}}$$

where $|\Sigma|$ is the determinant of Σ.

Proposition 2. The mean and covariance of a GH skewed t distributed random variable $z_t \sim (\nu, \mu_z, \Sigma, \gamma)$, is

$$E[z_t] = \mu_z + \gamma \nu^{\frac{\nu}{\nu-2}}$$

and

$$Cov[z_t] = \frac{\nu}{\nu-2} \Sigma + \gamma \gamma' \frac{2\nu^2}{(\nu-2)^2(\nu-4)}$$

Proof. By applying formula (5.3),(5.4) and (5.7), we obtain

$$E[z_t] = \mu_z + \gamma \frac{\nu^{\frac{\nu}{\nu-2}}}{\nu-1} = \mu_z + \gamma \frac{\nu}{\nu-2}$$

$$Cov[z_t] = \frac{\nu}{\nu-2} \Sigma + \gamma \gamma' \frac{2\nu^2}{(\nu-2)^2(\nu-4)}$$

\[\square\]

5.2.2 OGARCH

Suppose H_t can be estimated by orthogonal GARCH model. Then let Y be a multivariate time series of daily returns with mean zero on k assets with length T with columns y_1, \ldots, y_k. We define the $T \times k$ matrix X_t whose columns x_1, \ldots, x_k are given by the equation

$$x_t = \frac{y_t - \mu_i}{\sqrt{v_i}}$$

where $V = diag(v_1, \ldots, v_m)$ with v_i being the sample variance of y_t and μ_i is the sample mean of y_t.

Let L denote the matrix of eigenvectors of the population correlation of x_t and by $l_m = (l_{1,m}, \ldots, l_{k,m})$ its mth column. l_m is the $k \times 1$ eigenvector corresponding to the eigenvalue λ_m. The column labelling of L has been chosen so that $\lambda_1 > \lambda_2 > \cdots > \lambda_k$. Let D be the diagonal matrix of eigenvalues. The mth principal component of the system is defined by

$$p_m = x_1 l_{1,m} + x_2 l_{2,m} + \cdots + x_k l_{k,m}$$

If each vector of principal components p_m is placed as the columns of a $T \times k$ matrix P, then,

$$P = XL$$

63
The principal component columns is modeled by GARCH(1,1)

\[p_t | \Psi_{t-1} \sim N(0, \Sigma_t) \]

\[p_{t,t} = \epsilon_{t,t} \]

\[\sigma^2_{i,t} = \omega_i + \alpha_i \epsilon^2_{i,t-1} + \beta_i \sigma^2_{i,t-1} \]

where \(\Sigma_t \) is a diagonal matrix of the conditional variances of the principal components \(P.\Psi_{t-1} \) contains all the information available up to time \(t-1 \). The conditional covariance Matrix of \(X_n \) is \(D_t = L \Sigma_t L^T \) and the conditional covariance matrix of \(Y \) is given by

\[H_t = E[Y_t | \Psi_{t-1}] = \sqrt{V} D_t \sqrt{V} = \sqrt{V} L \Sigma_t L^T \sqrt{V} \]

5.2.3 Portfolio return distribution

Assume that the portfolio weight \(w = [w_1, w_2, \ldots, w_k]^T \) and then the portfolio return at time \(t \) is \(R_t = w_1 y_{1,t} + w_2 y_{2,t} + \cdots + w_k y_{k,t} = w^T Y_t = w^T (\mu + H_t^{1/2} z_t) \).

Proposition 3. ** **Conditional Distribution of the portfolio The conditional distribution of the portfolio return \(R_t \) is one dimensional skewed t distribution, denoted by \(R_t | \Psi_{t-1} \sim \text{Skewt}(\nu, w^T (H_t \mu_z + \mu), w^T H_t^T \Sigma H_t w, w^T H_t^T \gamma) \), if the assets \(z_t \) follow a multivariate skewed t distribution, \(z_t \sim \text{Skewt}(\nu, \mu_z, \Sigma, \gamma) \).

Proof. Substitute \(B = H_t^{1/2} \) and \(b = \mu \) in Proposition 1, we get the conditional distribution of the asset returns

\[Y_t | \Psi_{t-1} \sim \text{Skewt}(\nu, H_t^{1/2} \mu_z + \mu, H_t^{1/2} \Sigma H_t^{1/2}, H_t^{1/2} \gamma) \]

. Then we apply Proposition 1 again by letting \(B = w^T, b = 0 \) and get the conditional return of the portfolio follows a one-dimensional skewed t distribution

\[R_t | \Psi_{t-1} \sim \text{Skewt}(\nu, w^T (H_t^{1/2} \mu_z + \mu), w^T H_t^{1/2} \Sigma H_t^{1/2} w, w^T H_t^{1/2} \gamma) \]

\[\square \]

Proposition 4. The conditional mean of the return \(Y_t \) is \(\mu_{y,t} = (H_t^{1/2} \mu_z + \mu) + H_t^{1/2} \gamma \frac{\nu}{\nu-2} \) and the conditional variance is \(\sigma^2_{y,t} = H_t^{1/2} \Sigma H_t^{1/2} \frac{\nu}{\nu-2} + H_t^{1/2} \gamma \gamma^T H_t^{1/2} \frac{2\nu^2}{(\nu-2)^2 (\nu-4)} \)

Proof. According to Aas (2006), the conditional mean and standard deviation of the
asset returns at time t is
\[\mu_{yt} = E[Y^t | \Psi_{t-1}] = (H_{t}^{1/2} \mu_z + \mu) + H_{t}^{1/2} \gamma \frac{\nu}{\nu - 2} \] (5.8)

According to equation (5.4) and (5.5), the covariance of the asset returns at time t is
\[\sigma^2_{yt} = Var[Y^t | \Psi_{t-1}] = H_{t}^{1/2} \Sigma H_{t}^{1/2} \frac{\nu}{\nu - 2} + H_{t}^{1/2} \gamma \gamma^T H_{t}^{1/2} \frac{2\nu^2}{(\nu - 2)^2(\nu - 4)} \] (5.9)

5.3 Portfolio Optimization under GH Skewed t distribution

In this section, we find the optimal portfolio weight by assuming the conditional portfolio return follows an univariate GH skewed t distribution.

Suppose there are n risky assets and an investor can invest in all the assets. Assume the conditional return of n risky asset at time t \(Y_t = (y_{1,t}, y_{2,t}, \ldots, y_{n,t}) \) follows a n dimension skewed t distribution. Now the investor tries to find the optimal weight at time t \(w_t = [w_{t,1}, w_{t,2}, \ldots, w_{t,n}]^T \). Then the portfolio return at time t+1 is \(R_{t+1} = w^T Y_{t+1} \).

By Proposition 3, the conditional portfolio return is skewed t distributed. Given that \(R_{t+1} = w^T Y_{t+1} \), by Proposition 4 we have
\[\mu_{p,t+1} = E[R_{t+1} | \Psi_t] = w_T \left[(H_{t+1}^{1/2} \mu_z + \mu) + H_{t+1}^{1/2} \gamma \frac{\nu}{\nu - 2} \right] \] (5.10)

and
\[\sigma^2_{p,t+1} = Var[R_{t+1} | \Psi_t] = w_T \left[H_{t}^{1/2} \Sigma H_{t}^{1/2} \frac{\nu}{\nu - 2} + H_{t}^{1/2} \gamma \gamma^T H_{t}^{1/2} \frac{2\nu^2}{(\nu - 2)^2(\nu - 4)} \right] w \] (5.11)

5.3.1 VaR

VaR has played an important role in risk management. Instead of considering both upside and downside payoffs, VaR measures only the downside of the expected return.

Definition 7. Value at Risk (VaR) Given a confidence level \(p \in (0, 1) \), the VaR of a portfolio at a confidence level \(p \) over the time period \(t \) is given by the smallest number
such that the probability of a loss L_s over a time interval t greater than l_0 is $1-p$. That is,

$$VaR(L) = \inf \{l_0 : P(L_s > l_0) \leq 1 - p\}$$

$$= \inf \{F_L(l_0) \geq p\}$$

$$= F_L^{-1}(p)$$

Where $F(.)$ is the cumulative function of L_s and F^{-1} is the inverse function of F_L.

Most applications of VaR are used to control the risk over short horizons, so it’s useful to introduce the Value at Risk that employs information up to time $t-1$ to produce a VaR for time period t. Let (VaR_t) denote the one-day-ahead forecast of VaR which is defined as

$$P(R_t \leq -VaR_{t-1}|\Psi_{t-1}) = p \quad (5.12)$$

Where R_t is the portfolio return at time t and Ψ_{t-1} is the available information at $t-1$.

Proposition 5. It follows from direct computations that $VaR_{t-1} = -\mu_{p,t} + k_p\sigma_{p,t}$ if the returns follow normal or student t distributions.

Where k_p is the p % left tail of the normal or student t distribution.

Unfortunately, for GH skewed t distribution, k_p is complicated and generally has no closed-form solution.

Even though VaR is very popular, it has some drawbacks and undesirable properties such as lack of sub-additivity and non-convexity. As mentioned in [Artzner et al. 2002], it is not a coherent measure of risk.

5.3.2 CVaR

An alternative risk measure called conditional Value-at-Risk(CVaR) was proposed by [Rockafellar and Uryasev 2000]. CVaR is defined as follows:

Definition 8. **Conditional Value at Risk (CVaR)** Given a confidence level $p \in (0,1)$ and a random variable loss L_s

$$CVaR_p(L_s) = E[L_s | L_s \geq VaR_p] = \frac{1}{1-p} \int_p^1 VaR_x dx$$
If the cumulative function of L_s F_L is continuous, then we have

$$CVaR_p(L) = 1 \left(\frac{1}{1-p} \int_p^1 VaR(x) dx \right)$$

$$= \frac{1}{1-p} \int_p^1 F_L^{-1}(x) dx$$

$$= \frac{1}{1-p} \int_{F_L^{-1}(p)}^\infty F_L(x) dx$$

$$= \frac{1}{1-p} \int_{VaR_p}^\infty x dF_L(x)$$

Artzner et al. (2002) show that CVaR is a coherent risk measure and it has the following properties

Proposition 6. Consider the space of random variables representing portfolio losses over some time interval \mathcal{G} and $L_1, L'_2, L_s \in \mathcal{G}$. CVaR satisfies the following properties:

1. **Subadditivity:** $CVaR(L_1 + L_2) \leq CVaR(L_1) + CVaR(L_2)$.

2. **Positive Homogeneity:** For any $\lambda > 0$, $CVaR(\lambda L) = \lambda CVaR(L)$

3. **Translation Invariance:** For any constant $a \in \mathbb{R}$, $CVaR(a + L_s) = a + CVaR(L_s)$

4. **Monotonicity:** If $L_1 \leq L_2$, then $CVaR(L_1) \leq CVaR(L_2)$

5. **Convexity:** For any $\lambda \in [0, 1]$, $CVaR(\lambda L_1 + (1 - \lambda)L_2) \leq \lambda CVaR(L_1) + (1 - \lambda) CVaR(L_2)$

5.3.3 Mean-Variance Portfolio Optimization

Suppose that the investor wants to maximize the utility function, the classical mean-variance portfolio optimization (MV1) is given by

$$\text{Maximize} \quad w_t^T E[Y_{t+1} | \Psi_t] - \frac{\lambda}{2} w_t^T \text{Var}(Y_{t+1} | \Psi_t) w_t$$

subject to

$$w_t^T \mathbf{1} = 1$$

Define $A = \mathbf{1}^T \Sigma^{-1} \mathbf{1} > 0$, $B = \mathbf{1}^T \Sigma^{-1} \bar{\mu} > 0$ and $C = \bar{\mu}^T \Sigma^{-1} \bar{\mu} > 0$
Theorem 1. The classical mean-variance portfolio optimization (MV1) has a unique global optimal solution

\[w^*_t = \frac{1}{\lambda_t \Sigma} \left(\bar{\mu} - \frac{(\bar{\mu} \Sigma^{-1} I - \lambda_t I)}{I^T \Sigma^{-1} I} \right) = \frac{1}{\lambda_t \Sigma} \left(\bar{\mu} - \frac{(B - \lambda_t I)}{A} \right) \]

where \(\lambda \geq 0 \) is a risk aversion coefficient and \(w_t \) denotes the portfolio weight vector.

Proof. The Lagrangian of the optimization problem MV1 subject to variance constraints is expressed as follows:

\[
L(w_t|\Psi_t) = w_t^T E[Y_{t+1}|\Psi_t] - \frac{\lambda}{2} w_t^T Var(Y_{t+1}|\Psi_t) w_t - \eta_t (w_t^T 1 - 1)
\]

\[
= w_t^T \left[(H_{t+1}^2 \mu_z + \mu) + H_{t+1}^{2T} \nu \frac{\nu}{\nu - 2} \right] - \frac{\lambda}{2} w_t^T \left[H_{t+1}^{2T} \Sigma H_{t+1}^{\frac{1}{2}} \frac{\nu}{\nu - 2} + H_{t+1}^{2T} \gamma \nu \frac{\nu}{\nu - 2} \left(H_{t+1}^{2T} \nu \frac{\nu}{\nu - 2} \right) \right] w_t
\]

\[- \eta_t (w_t^T 1 - 1) \]

where \(\eta_t \) is the Lagrange multipliers for the constraint.

Using this Lagrange function, the KKT (Karush-Kuhn-Tucker) optimality conditions (Floudas and Visweswaran, 1995) are:

\[
\frac{\partial L(w_t|\Psi_t)}{\partial w_t} = \left(H_{t+1}^2 \mu_z + \mu \right) + H_{t+1}^{2T} \nu \frac{\nu}{\nu - 2}
\]

\[- \lambda \left[H_{t+1}^{2T} \Sigma H_{t+1}^{\frac{1}{2}} \frac{\nu}{\nu - 2} + H_{t+1}^{2T} \gamma \nu \frac{\nu}{\nu - 2} \left(H_{t+1}^{2T} \nu \frac{\nu}{\nu - 2} \right) \right] w_t - \eta_t 1 = 0 \tag{5.14} \]

\[
\frac{\partial L(w_t|\Psi_t)}{\partial \eta_t} = w_t^T 1 - 1 = 0 \tag{5.15} \]

The conditions (14) and (15) has the matrix representation:

\[
\begin{bmatrix}
\lambda \left[H_{t+1}^{2T} \Sigma H_{t+1}^{\frac{1}{2}} \nu \frac{\nu}{\nu - 2} + H_{t+1}^{2T} \gamma \nu \frac{\nu}{\nu - 2} \left(H_{t+1}^{2T} \nu \frac{\nu}{\nu - 2} \right) \right] 1^T
\end{bmatrix}
\begin{bmatrix}
w_t \\
\eta_t
\end{bmatrix}
= \begin{bmatrix}
(H_{t+1}^2 \mu_z + \mu) + H_{t+1}^{2T} \nu \frac{\nu}{\nu - 2}
\end{bmatrix}
\begin{bmatrix}
1
\end{bmatrix}
\]
Then the optimal solution is given by

\[\eta_t = \frac{\bar{\mu} \Sigma^{-1} 1^T - \lambda_t}{1^T \Sigma^{-1} 1} \]

and

\[w^* = \frac{1}{\lambda_t \Sigma} \left(\tilde{\mu} - \frac{(B - \lambda_t) 1}{A} \right) \] \hspace{1cm} (5.16)

Where \(\Sigma = H_t^{1T} \Sigma H_t^{1T} \frac{\nu}{\nu-2} + H_t^{1T} \gamma^T H_t^{1} \frac{2\nu^2}{(\nu-2)(\nu-4)} \) and \(\tilde{\mu} = (H_t^{1T} \mu_z + \mu) + H_t^{1T} \gamma \frac{\nu}{\nu-2} \)

5.3.4 Safety-first Portfolio Optimization

Assume that a fixed lower threshold of portfolio return at \(t \) is \(R_p \) and the maximal acceptable probability of this disaster is \(p \). A safety-first portfolio optimization problem is described by

maximize \(R_p(w) \) \hspace{1cm} (5.17)

subject to

\[w_t^T 1 = 1 \]

\[P(R_{t+1} < R_p | \Psi_t) \leq p \]

By Tchebycheff inequality, we have

\[P(P(R_{t+1} < R_p | \Psi_t) = P(R_{t+1} - E(R_{t+1}) < R_p - E(R_{t+1}) | \Psi_t) \]

\[= P(E(R_{t+1}) - R_{t+1} > E(R_{t+1}) - R_p | \Psi_t) \]

\[\leq \frac{Var(R_{t+1} | \Psi_t)}{(E(R_{t+1} | \Psi_t) - R_p)^2} \]

Then the probabilistic constraint in \(\text{MV}2 \) be replaced by a stronger constraint

\[\frac{Var(R_{t+1} | \Psi_t)}{(E(R_{t+1} | \Psi_t) - R_p)^2} \leq p \]

Therefore, the portfolio optimization problem(17) is simplified as

maximize \(R_p(w) \) \hspace{1cm} (5.18)
subject to
\[w_t^T 1 = 1 \]
\[\text{Var}(R_{t+1} | \Psi_t) \leq p(E(R_{t+1} | \Psi_t) - R_p)^2 \] (5.19)
or equivalently
\[
\text{maximize} \quad w_t^T E[Y_{t+1} | \Psi_t] - \frac{1}{\sqrt{p}} \sqrt{w_t^T \text{Var}(Y_{t+1} | \Psi_t) w_t}
\] (5.20)
subject to
\[w_t^T 1 = 1 \]

The classic safety-first approach only expects a higher lower insured threshold and discourages the risk diversification sometimes. Therefore, a modified safety-first model (MV2) is proposed by adding a variance constraint:
\[
\text{maximize} \quad w_t^T E[Y_{t+1} | \Psi_t] - \frac{1}{\sqrt{p}} \sqrt{w_t^T \text{Var}(Y_{t+1} | \Psi_t) w_t}
\] (5.21)
subject to
\[w_t^T 1 = 1 \]
\[\sqrt{w_t^T \text{Var}(Y_{t+1} | \Psi_t) w_t} \leq c \] (5.22)

Proposition 7. The function \(f(w) = w_t^T E[Y_{t+1} | \Psi_t] - \frac{1}{\sqrt{p}} \sqrt{w_t^T \text{Var}(Y_{t+1} | \Psi_t) w_t} \) is a concave function for \(w \in \mathbb{R}^n \).
Proof. Let $w_1, w_2 \in \mathbb{R}^n$, for any $\lambda \in [0, 1]$, we have

$$
\lambda f(w_1) + (1 - \lambda) f(w_2) - f(\lambda w_1 + (1 - \lambda) w_2)
= \lambda w_1^T E[Y_{t+1} | \Psi_t] - \lambda \frac{1}{\sqrt{p}} \sqrt{w_1^T Var(Y_{t+1} | \Psi_t) w_1 + (1 - \lambda) w_2^T E[Y_{t+1} | \Psi_t] - (1 - \lambda) \frac{1}{\sqrt{p}} \sqrt{w_2^T Var(Y_{t+1} | \Psi_t) w_2 - (\lambda w_1 + (1 - \lambda) w_2) E[Y_{t+1} | \Psi_t]}
+ \frac{1}{\sqrt{p}} \sqrt{(\lambda w_1 + (1 - \lambda) w_2)^T Var(Y_{t+1} | \Psi_t) (\lambda w_1 + (1 - \lambda) w_2) - (\lambda w_1 + (1 - \lambda) w_2)^T Var(Y_{t+1} | \Psi_t) (\lambda w_1 + (1 - \lambda) w_2)}
= \frac{1}{\sqrt{p}} \left(\lambda \sqrt{w_1^T Var(Y_{t+1} | \Psi_t) w_1 + (1 - \lambda) \sqrt{w_2^T Var(Y_{t+1} | \Psi_t) w_2}} \right)
= \frac{1}{\sqrt{p}} (m - n)
$$

Where $m = \sqrt{(\lambda w_1 + (1 - \lambda) w_2)^T Var(Y_{t+1} | \Psi_t) (\lambda w_1 + (1 - \lambda) w_2)$
and $n = \lambda \sqrt{w_1^T Var(Y_{t+1} | \Psi_t) w_1 + (1 - \lambda) \sqrt{w_2^T Var(Y_{t+1} | \Psi_t) w_2}$

Then $f(w)$ is a concave function if $m < n$. $\iff m^2 < n^2$, so we only need to prove that

$$
w_1^T Var(Y_{t+1} | \Psi_t) w_2 < \sqrt{w_1^T Var(Y_{t+1} | \Psi_t) w_1 \sqrt{w_2^T Var(Y_{t+1} | \Psi_t) w_2}}
$$

Note that

$$(w_1 + w_2)^T Var(Y_{t+1} | \Psi_t) (w_1 + w_2) = w_1^T Var(Y_{t+1} | \Psi_t) w_1 + 2w_1^T Var(Y_{t+1} | \Psi_t) w_2 + w_2^T Var(Y_{t+1} | \Psi_t) w_2 \geq 0$$

we have

$$\sqrt{w_1^T Var(Y_{t+1} | \Psi_t) w_1 \sqrt{w_2^T Var(Y_{t+1} | \Psi_t) w_2}} \geq w_1^T Var(Y_{t+1} | \Psi_t) w_2$$

Therefore,

$$\lambda f(w_1) + (1 - \lambda) f(w_2) \leq f(\lambda w_1 + (1 - \lambda) w_2)$$

\[\square\]

Theorem 2. The modified safety-first portfolio optimization problem (MV2) has a global optimal solution.

(1) When $c > \frac{1}{\sqrt{A}}$ and $0 < p < \min(1, \frac{A}{AC-B^2})$, or when $c \leq \frac{1}{\sqrt{A}}$ and $\frac{A}{AC-B^2} < p < \min(1, \frac{A}{AC-B^2})$. The modified safety-first model (MV2) has a unique global optimal so-
lution \(w \), and

\[
\begin{aligned}
\frac{1}{\sqrt{B^2 - A(C - \frac{1}{p})}}
\Sigma^{-1} \left(\mu - \frac{-B + \sqrt{B^2 - A(C - \frac{1}{p})}}{A} \right)
\end{aligned}
\]

(2) When \(c < \frac{1}{\sqrt{C}} \) and \(0 < p < \left(\frac{c\sqrt{C} - 1}{c\sqrt{C} + 1} \right)^2 \) there exists a unique global optimal solution

\[
\begin{aligned}
w = A^{-1} \Sigma^{-1} \mu - \frac{c(\Sigma^{-1} \mu - BA^{-1} \Sigma^{-1} \mathbf{1})}{\frac{1}{\sqrt{p}} + \frac{c\sqrt{C}}{c\sqrt{C} + 1}}
\end{aligned}
\]

(3) For any other values of \(c \) and \(p \), the solution does not exist.

Proof. The Lagrangian function of the optimization problem (20) with linear constraints is

\[
\begin{aligned}
L(w_t | \Psi_t) &= w_t^T \mu - \frac{1}{\sqrt{p}} \sqrt{w_t^T \Sigma w_t} + \eta(w_t^T \mathbf{1} - 1) + \lambda(\sqrt{w_t^T \Sigma w_t} - c)
\end{aligned}
\]

where \(\eta \) and \(\lambda \) are the Lagrange multipliers for the constraints.

According to Proposition 7, \(f(w) \) is a differentiable concave function. Therefore, the problem has a global optimal solution if and only if the following KKT conditions are satisfied

\[
\begin{aligned}
\frac{\partial L(w_t | \Psi_t)}{\partial w_t} &= \mu - \frac{1}{\sqrt{p}} (w_t^T \Sigma w_t)^{-\frac{1}{2}} \Sigma w_t + \eta \mathbf{1} + \lambda (w_t^T \Sigma w_t)^{-\frac{1}{2}} \Sigma w_t = 0 \quad (5.23)
\end{aligned}
\]

\[
\begin{aligned}
\frac{\partial L(w_t | \Psi_t)}{\partial \eta} = w_t^T \mathbf{1} - 1 = 0 \quad (5.24)
\end{aligned}
\]

\[
\begin{aligned}
\frac{\partial L(w_t | \Psi_t)}{\partial \lambda} = w_t^T \Sigma w_t - c \leq 0 \quad (5.25)
\end{aligned}
\]

\[
\lambda(\sqrt{w_t^T \Sigma w_t} - c) = 0 \quad (5.26)
\]

\[
\lambda \geq 0 \quad (5.27)
\]
Rearrange equation (23), we have

\[w = \frac{\bar{\Sigma}^{-1} \bar{\mu} + \eta \bar{\Sigma}^{-1} \mathbf{1}}{\frac{1}{\sqrt{p}} - \lambda} \] \hspace{1cm} (5.28)

and

\[w = \frac{\bar{\Sigma}^{-1} \bar{\mu} + \eta \bar{\Sigma}^{-1} \mathbf{1}}{\frac{1}{\sqrt{p}} - \lambda} \] \hspace{1cm} (5.29)

From equation (24) and (28), we get

\[\frac{1}{\sqrt{p}} = \lambda + (B + \eta A) \sqrt{w_t^T \Sigma w_t} \] \hspace{1cm} (5.30)

and

\[\sqrt{w_t^T \Sigma w_t} = \frac{1}{\sqrt{p}} - \lambda \] \hspace{1cm} (5.31)

Substitute equation (30) into (28), we obtain

\[w = \frac{\bar{\Sigma}^{-1} \bar{\mu} + \eta \bar{\Sigma}^{-1} \mathbf{1}}{B + \eta A} \] \hspace{1cm} (5.32)

(1) If the variance constraint (22) is not binding, then we have \(\lambda = 0 \) and

\[\bar{\mu} - \frac{1}{\sqrt{p}} (w_t^T \Sigma w_t)^{-\frac{1}{2}} \bar{\Sigma} w + \eta \mathbf{1} = 0 \] \hspace{1cm} (5.33)

From (24), we get

\[w_t = \frac{1}{1^T} \]

Substitute \(w_t = \frac{1}{1^T} \) and rearrange equation (28), we get the

\[\sqrt{p} = -1^T \bar{\Sigma}^{-1} (\bar{\mu} + \mathbf{1} \eta) \sqrt{w_t^T \Sigma w_t} \]

\[= -(B + \eta A) \sqrt{w_t^T \Sigma w_t} \] \hspace{1cm} (5.34)

\[A\eta^2 + 2B \eta + C + \frac{1}{p} = 0 \] \hspace{1cm} (5.35)

The discriminant of the quadratic equation (31) \(\Delta = B^2 - A(C - \frac{1}{p}) \).

If \(\Delta \leq 0 \), the solution of (31) does not exist.
If $\Delta = 0$, $B^2 = A(C - \frac{1}{p})$, there is a unique solution $\eta = -\frac{B}{A}$. However, in this case, $\sqrt{p} = 0$ which contradicts with our assumption that $p > 0$. Hence, $\eta = \frac{B}{A}$ is rejected.

If $\Delta > 0$, $B^2 > A(C - \frac{1}{p})$, there are two distinct solutions $\eta_1 = \frac{-B + \Delta}{A}$ and $\eta_2 = \frac{-B - \Delta}{A}$. η_2 is rejected because \sqrt{p} is negative if η_2 is substituted into (29).

After replacing the expression for η by $\eta_1 = \frac{-B + \Delta}{A}$ in (29), we obtain

$$\sqrt{w_t^T \Sigma w_t} = \frac{1}{\sqrt{\Delta p}} \leq c \quad (5.36)$$

From equation (36), we have

$$p \geq \frac{A - \frac{1}{\sqrt{C}}}{AC - B^2}$$

If $c \leq \frac{1}{\sqrt{A}}$, then the unique optimal solution of (28) is obtained

$$w = \frac{1}{\sqrt{B^2 - A(C - \frac{1}{p})}} \Sigma^{-1} \left(\bar{\mu} + \frac{-B + \sqrt{B^2 - A(C - \frac{1}{p})}}{A} \bar{1} \right) \quad (5.37)$$

when $\frac{A - \frac{1}{\sqrt{C}}}{AC - B^2} < p < \min(1, \frac{A}{AC - B^2})$.

If $c > \frac{1}{\sqrt{A}}$, solution (37) exists when $0 < p < \min(1, \frac{A}{AC - B^2})$.

(2) If the variance constraint (22) is binding, then we have $\lambda > 0$. Then we get have $\sqrt{w_t^T \Sigma w_t} = c$ from equation (26) and $\lambda < \frac{1}{\sqrt{p}}$. Substituting $\sqrt{w_t^T \Sigma w_t} = c$ into equation (30), we have

$$\lambda = \frac{1}{\sqrt{p}} - (B + \eta A)c \quad (5.38)$$

Solve equation (29) and (38), we get

$$\frac{C}{p} = \left(\sqrt{C} \lambda + \frac{\sqrt{p} - \lambda}{c} \right)^2 \quad (5.39)$$

Solve equation (39), we have $\lambda_1 = \frac{1}{\sqrt{p}}$, which contradicts with $\lambda < \frac{1}{\sqrt{p}}$ and $\lambda_2 = -\frac{\sqrt{C+1}}{c \sqrt{C-1}}$ if $c < \frac{1}{\sqrt{C}}$ and $p < \left(\frac{\sqrt{C-1}}{c \sqrt{C+1}} \right)^2$. In this case, the unique solution is

$$w = A^{-1} \Sigma^{-1} \bar{1} + \frac{c(\Sigma^{-1} \bar{\mu} - BA^{-1} \Sigma^{-1} \bar{1})}{1/\sqrt{p} + \frac{c\sqrt{C+1}}{c \sqrt{C-1}}}$$
Corollary 1. If $\lambda_t = \sqrt{B^2 - A(C - \frac{1}{2})}$, the modified safety-first portfolio optimization problem (MV2) has the same solution as the Mean-Variance problem (MV1) when $c > \frac{1}{\sqrt{A}}$ and $0 < p < \min(1, \frac{A}{AC-B^2})$, or when $c \leq \frac{1}{\sqrt{A}}$ and $\frac{A-1}{AC-B^2} < p < \min(1, \frac{A}{AC-B^2})$.

5.3.5 Mean-CVaR Portfolio Optimization

For a given expected return of portfolio r with weight vector w, the Mean-CVaR portfolio optimization problem (MV3) is given

$$\minimize \quad CVaR_t(w)$$

subject to

$$w^T 1 = 1$$
$$w^T E[Y_{t+1} | \Psi_t] = r$$

Since the calculation of CVaR as a function of portfolio weights w and the loss distribution F_L is difficult, the following auxiliary function (Rockafellar and Uryasev, 2000) is considered

$$F_p(w, \xi) = \xi + \frac{1}{1 - p} \int_{x \in \mathbb{R}} (w^T x - \xi)^+ f_L(x) dx$$

(5.41)

where $f_L(x)$ is the probability density function of the loss distribution function $F_L(x)$ and $[a]^+ = \max(0, a)$. w denotes the portfolio weight. $F_p(w, \xi)$ is a convex function of ξ and continuously differentiable.

Theorem 3. Minimizing the CVaR of the loss of portfolio with weight w is equivalent to minimizing $F_p(w, \xi)$, that is,

$$\min CVaR(w) = \min F_p(w, \xi)$$

Proof. See Rockafellar and Uryasev (2000)
The optimization problem (MV3) becomes

\[
\text{minimize } \xi + \frac{1}{(1-p)n} \sum_{j=1}^{n} (w^T x_j - \xi)^+ \quad (5.43)
\]

subject to

\[
w_t^T 1 = 1
\]

\[
w_t^T \left[(H_{t+1}^2 \mu_z + \mu) + H_{t+1}^2 \gamma \frac{\nu}{\nu - 2} \right] = R
\]

Let \((w^T x_j - \xi)^+\) be replaced by auxiliary variables \(z_i\) with two linear constraints \(z_i \geq 0\) and \(z_i \geq w_t^T x_j - \xi\) for \(i = 1, \ldots, n\). Then mean-CVaR problem (20) is equivalent to

\[
\text{Maximize } \quad w_t^T E[Y_{t+1} | \Psi_t] - \lambda (\xi + \frac{1}{(1-p)n} \sum_{j=1}^{n} z_j) \quad (5.44)
\]

subject to

\[
z_j \geq 0 \quad j = 1, \ldots, n
\]

\[
z_j \geq w_t^T x_j - \xi \quad j = 1, \ldots, n
\]

\[
\sum_{j=1}^{n} z_j = 1
\]

Therefore, the mean-CVaR problem (21) becomes a linear programming problem with respect to portfolio weight \(w\).

5.4 Parameter estimation for skewed t distribution

Given a return time series \(Y_t\) in (5.1), the parameters in OGARCH model are estimated by the procedure in appendix. \(\mu\) is estimated by sample mean with \(\mu_i = \frac{1}{T} \sum_{t=1}^{T} Y_{i,t}\) for \(i = 1, 2, 3, 4\). After the conditional covariance \(H_t\) in OGARCH model is determined, the filter data \(z_t\) is obtained by

\[
z_t = (Y_t - \mu) H_t^{-\frac{1}{2}}
\]
Then the multivariate skewed t distribution is calibrated to z_t by applying EM Algorithm.

EM algorithm

The EM algorithm developed by [Dempster et al. (1977)](https://www.jstor.org/stable/2334880) is a very useful tool for the iterative computation of maximum likelihood estimates to deal with the missing or incomplete data problems. In each iteration of the EM algorithm, there are two steps called the expectation step (E-step) and the maximization step (M-step). We use similar estimation method as described in the paper by [Aas (2006)](https://www.tandfonline.com/doi/abs/10.1080/10407290801864227).

Let $\theta = (\nu, \mu_z, \Sigma, \gamma)$, the a log-likelihood function for θ is given by

$$
\log L(\theta, z) = \sum_{i=1}^{T} f_Z(z_i, \theta) \quad (5.45)
$$

Where $f_Z(\cdot)$ is GH skewed t distribution in definition 5.6.

Note that $W \sim \text{Igamma}(\nu, \nu)$ and $z_t | W \sim N(\mu_z + \gamma W, W\Sigma)$ and the joint distribution of Z and W is

$$
f_{Z,W}(z, w, \theta) = f_{Z/W}(z/w, \mu_z, \Sigma, \gamma) g_W(w, \nu)
$$

where g_W is the density of inverse gamma (ν, ν). $f_{Z/W}$ is the density of conditional normal distribution $N(\mu_z + \gamma W, W\Sigma)$.

From (5.6), g_W can be expressed as

$$
g_W(w) = \left(\frac{\nu}{2}\right)^{\nu/2} w^{-\nu/2 - 1} e^{-\nu w} \quad (5.46)
$$

$f_{Z/W}$ can be written as

$$
f_{Z/W}(z/w) = \frac{e^{(z-\mu_z)^T \Sigma^{-1} \gamma - (z-\mu_z)^T \Sigma^{-1} (z-\mu_z) - \frac{\gamma^T \Sigma^{-1} \gamma}{2w}}}{(2\pi)^{\frac{\nu}{2}} \sqrt{|\Sigma|} w^{\frac{\nu}{2}}} \quad (5.47)
$$
The augmented log-likelihood is

\[
\log \tilde{L}(\theta, z, W) = \sum_{i=1}^{T} f_{Z, W}(z, w, \theta) = \sum_{i=1}^{T} \log f_{Z/W}(z_i/w_i, \mu_z, \Sigma, \gamma) \sum_{i=1}^{T} \log g_W(w_i, \nu) = L_1(\mu_z, \Sigma, \gamma, z/w) + L_2(\nu, w)
\]

\(L_1\) and \(L_2\) could be maximized separately if the latent mixing variables are observable.

From (16) and (17), we get

\[
L_1(\mu_z, \Sigma, \gamma, z/w) = \sum_{i=1}^{T} (z_i - \mu_z)^T \Sigma^{-1} \gamma - \frac{d}{2} \sum_{i=1}^{T} \log(w_i) - \frac{T}{2} \log |\Sigma| - T \frac{d}{2} \log 2\pi
\]

\(L_2(\nu, w) = T \frac{\nu}{2} \log \left(\frac{\nu}{2} \right) - \left(\frac{\nu}{2} - 1 \right) \sum_{i=1}^{T} \log w_i - \frac{\nu}{2} \sum_{i=1}^{T} \frac{1}{w_i} - T \log \Gamma\left(\frac{\nu}{2} \right)
\]

E Step

The E-step computes the conditional expectation of the sufficient statistics of the log-likelihood \(L_1\) and \(L_2\) given the current values of the parameters, which are \(W, W^{-1}\) and \(\log W\). This involves the calculation of the following conditional expectations.

\[
e_i^{[k]} = E[W_i|z_i, \theta^{[k]}] \\
\zeta_i^{[k]} = E[W_i^{-1}|z_i, \theta^{[k]}] \\
\xi_i^{[k]} = E[\log W_i|z_i, \theta^{[k]}]
\]

It can be shown that the conditional density function of \(W\) is GIG distribution. That is,

\[
W|z \sim GIG\left(-\frac{d + \nu}{2}, (z - \mu_z)^T \Sigma^{-1} (z - \mu_z) + \nu, \gamma^T \Sigma^{-1} \gamma \right)
\]
The moments of the GIG(a, b, c) distribution are given by Karlis (2002)

\[E(x^r) = \frac{b^r K_{a+c}(bc)}{c^r K_a(bc)} \]

Define \(A = (z - \mu_z)^T \Sigma^{-1} (z - \mu_z) + v \) and \(B = \gamma^T \Sigma^{-1} \gamma \), then we have

\[e_i^{[k]} = \left(\frac{A}{B} \right)^{\frac{1}{2}} \frac{K_{\nu+\frac{d}{2}} \sqrt{A^k + B^k}}{K_{\nu+\frac{d}{2}} \sqrt{A^k + B^k}} \]

(5.50)

\[\xi_i^{[k]} = \left(\frac{A}{B} \right)^{-\frac{1}{2}} \frac{K_{\nu+\frac{d}{2}} \sqrt{A^k + B^k}}{K_{\nu+\frac{d}{2}} \sqrt{A^k + B^k}} \]

(5.51)

According to \(E(logW) = \frac{\partial E(W^r)}{\partial r} \bigg|_{r=0} \) (Mencía and Sentana 2005)

\[\xi_i^{[k]} = \frac{1}{2} \log \left(\frac{A}{B} \right)^{\frac{1}{2}} \frac{\partial K_{\nu+\frac{d}{2}} \sqrt{A^k + B^k}}{\partial \alpha} \bigg|_{\alpha=0} \]

(5.52)

M Step

In M-step, the parameters are computed by maximizing the log-likelihood function (48) and (49). Take partial derivative of \(L_1 \) with respect to \(\gamma, \Sigma, \mu_z \),

\[\frac{\partial L_1}{\partial \gamma} = \sum_{i=1}^{T} (z_i - \mu_z)^T \Sigma^{-1} - 2 \sum_{i=1}^{T} \frac{w_i}{2} \gamma^T \Sigma^{-1} = 0 \]

(5.53)

\[\frac{\partial L_1}{\partial \mu_z} = -\sum_{i=1}^{T} \Sigma^{-1} \gamma + \sum_{i=1}^{T} \frac{z_i^T \Sigma^{-1} (z_i - \mu_z)}{w_i} = 0 \]

(5.54)

\[\frac{\partial L_1}{\partial \Sigma^{-1}} = \sum_{i=1}^{T} (z_i - \mu_z)^T \gamma - \sum_{i=1}^{T} \frac{(z_i - \mu_z)(z_i - \mu_z)^T}{2w_i} \]

\[- \sum_{i=1}^{T} \frac{w_i}{2} \gamma^T + \frac{T}{2} \Sigma^T = 0 \]

(5.55)
Solve equation (54) we have

$$
\mu_z = \frac{\sum_{i=1}^{T} z_i}{\sum_{i=1}^{T} w_i} - \frac{\sum_{i=1}^{T} \gamma}{\sum_{i=1}^{T} \frac{1}{w_i}}
$$ \hspace{1cm} (5.56)

Substitute (56) into (53) and solve \(\gamma \)

$$
\gamma = \frac{\sum_{i=1}^{T} w_i^{-1} (z_i - \bar{z}_i)}{T^{-1} \sum_{i=1}^{T} w_i^{-1} + T}
$$ \hspace{1cm} (5.57)

$$
\Sigma = \frac{1}{T} \left(\sum_{i=1}^{T} (z_i - \mu_z)(z_i - \mu_z)^T - \sum_{i=1}^{T} \frac{w_i}{2} \gamma \gamma^T \right)
$$ \hspace{1cm} (5.58)

The parameter \(\nu \) is given by solving the equation below numerically.

$$
\frac{\partial L_2}{\partial \nu} = \frac{T}{2} \log \left(\frac{\nu}{2} \right) + \frac{T}{2} - \frac{1}{2} \sum_{i=1}^{T} \log w_i - \frac{1}{2} \sum_{i=1}^{T} \frac{1}{w_i} - \frac{T}{2} \frac{\Gamma'(\frac{\nu}{2})}{\Gamma(\frac{\nu}{2})} = 0
$$ \hspace{1cm} (5.59)

Let \(\bar{e} = \frac{1}{T} \sum_{i=1}^{T} e_i \), \(\bar{\zeta} = \frac{1}{T} \sum_{i=1}^{T} \zeta_i \), and \(\bar{\xi} = \frac{1}{T} \sum_{i=1}^{T} \xi_i \). The initial value for \(\mu_z \), \(\Sigma \) and \(\gamma \) are the sample mean, sample covariance and zero vector respectively.

Then according to equation (50), (51) and (52), we can compute \(e_i^{[k]} \), \(\zeta_i^{[k]} \) and \(\xi_i^{[k]} \) at step \(k \).

Next the parameters are updated by

$$
\gamma_{[k+1]} = \frac{T^{-1} \sum_{i=1}^{T} e_i^{[k]}(\bar{z} - z_i)}{\bar{e}^{[k]} \bar{\zeta}^{[k]} + 1}
$$

$$
\mu_{z_{[k+1]}} = \frac{T^{-1} \sum_{i=1}^{T} e_i^{[k]} z_i - \gamma_{[k]}}{\bar{e}^{[k+1]}}
$$

$$
\Sigma_{[k+1]} = \frac{1}{T} \left(\sum_{i=1}^{T} e_i^{[k]} (z_i - \mu_{z_{[k+1]}})(z_i - \mu_{z_{[k+1]}})^T - \bar{\zeta}^{[k]} \gamma_{[k+1]} \gamma_{[k+1]}^T \right)
$$

\(\nu^{[k+1]} \) is given as the solution to the following equation

$$
\log \left(\frac{\nu}{2} \right) + 1 - \bar{\xi}^{[k]} - \bar{e}^{[k]} - \frac{\Gamma'(\frac{\nu}{2})}{\Gamma(\frac{\nu}{2})} = 0
$$
5.5 Numerical Result

The data used in this section is the daily returns of four HFRX indices (EH, EMN, M and MA) covering the period from April 1, 2003 to May 12, 2014. We consider portfolios composed of these four indices.

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>skewness</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>EH</td>
<td>0.005</td>
<td>-0.8406</td>
<td>8.63</td>
</tr>
<tr>
<td>EMN</td>
<td>-0.001</td>
<td>-0.1857</td>
<td>20.36</td>
</tr>
<tr>
<td>M</td>
<td>0.004</td>
<td>-1.0434</td>
<td>10.58</td>
</tr>
<tr>
<td>MA</td>
<td>0.016</td>
<td>1.5449</td>
<td>70.64</td>
</tr>
</tbody>
</table>

Table 5.1: Statistics of daily returns of fund indices: Mean of daily returns of the fund indices in percentage

<table>
<thead>
<tr>
<th></th>
<th>EH</th>
<th>EMN</th>
<th>M</th>
<th>MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EH</td>
<td>1.673</td>
<td>0.1633</td>
<td>0.420</td>
<td>0.6086</td>
</tr>
<tr>
<td>EMN</td>
<td>0.163</td>
<td>0.6644</td>
<td>0.1623</td>
<td>0.0606</td>
</tr>
<tr>
<td>M</td>
<td>0.420</td>
<td>0.1623</td>
<td>1.705</td>
<td>0.1085</td>
</tr>
<tr>
<td>MA</td>
<td>0.607</td>
<td>0.0606</td>
<td>0.1085</td>
<td>0.8063</td>
</tr>
</tbody>
</table>

Table 5.2: Covariance of daily returns of the fund indices \(10^{-5}\)

In Table 1 and 2, we present summary statistics. Note that the average daily return of MA is the highest, while the average return on EMN is negative. The large kurtosis indicates that all the return time series have fat tails. Table 2 shows that the correlations of these returns are positive and the covariance of M is largest.

Then the daily return data are filtered by OGARCH model with Gaussian innovations and the standardized filtered time series \(z_t\) is calibrated by the multivariate GH skewed t distribution. Figure 1 shows the stochastic correlation of HFRX indices of daily returns estimated by OGARCH model.

Figure 2 displays normal QQ plots of the filtered returns. The marginal densities of the filtered series are skewed and have fatter tails than Gaussian distribution. Therefore, we fit GH skew t, student t, NIG, GH and Variance Gamma distributions to the filtered data. Table 3 presents parameters estimated by various distributions and log likelihood statistics. The GH skew t distribution has the largest log likelihood, so it fits the best, while Gaussian distribution has the smallest log likelihood. From Figure 3 we can see that GH skew t distribution has a better fit to the data.
5.5.1 Efficient Frontier

In this section, we solve the Mean-Variance, enhanced safety first and Mean-CVaR portfolio optimization problems by assuming GH skewed t distribution and plot efficient frontiers versus different risk measures. First, we calibrate the mean and covariance of a multivariate GH skewed t to our filtered data, and forecast one week ahead covariance and mean of weekly return on May 12, 2014. Then we calculate the optimal portfolios by using different optimization models. We also impose the constraint that the weight of each asset is between -1 and 1.

Figure 4 displays the efficient frontiers for Mean-Variance and Mean-CVaR portfolio optimization models. According to Figure 4, for a given return, the Mean-CVaR portfolio has a higher standard deviation than the Mean-Variance portfolio. That means that Mean-CVaR portfolios can protect against the situations of extreme loss better.

5.5.2 Portfolio Performance Analysis

In this section, the performances of the optimal portfolios selected by using Mean-Variance, enhanced safety-first and Mean-CVaR models are compared in 2008 financial crisis period. The weekly returns of HFRX indices for the period from April 1, 2003 to Dec.31 2007 are used to estimate the parameters and then the first optimal portfolio is selected on Dec.31, 2007. The portfolio is rebalanced every week after the first investment period based on the information available up to the investment date. For
Figure 5.2: QQ-plot versus normal distribution of filtered daily returns of HFRX indices.

Each model, the weight of each fund index is between -1 and 1. We assume λ equals to 1 in Mean-Variance model and the probability p is 0.05 in enhanced safety-first model. The 0.95-CVaR is considered in the mean-CVaR model. The historical weekly returns are shown in Figure 5.

Portfolio performance in 2008

The realized portfolio returns based on the different models in the out-of-sample period (2007.12.31-2008.12.31) are plotted in Figure 6 and main statistics is reported in Table 4. As shown in Figure 6, the portfolio returns selected by minimizing 0.95-CVaR are more volatile. The optimal portfolio returns are very close for Mean-Variance and
safety-first models. The optimal portfolio returns selected by the safety-first model have the highest mean and smallest standard deviation. The Mean-Variance model gives the maximum return. As can be observed in figures 6, the weekly returns do not vary much between these three portfolios for most weeks. The most significant difference is that the losses are larger for Mean-CVaR and Mean-Variance models in October 2008. For a risk averse investor, the safety-first strategy is preferred in the financial crisis period.
Portfolio performance in 2013-2014

The second out-of-sample period is chosen from May 2013 to May 2014. From Figure 5 we can see that the weekly returns are very stable in this period. Table 5 shows that Mean-CVaR model has the highest return and outperforms Mean-Variance model based on all the statistics. Both the portfolio sets selected by the Mean-CVaR and Mean-Variance methods yield a significantly higher return for this period. Both Table 5 and Figure 7 show that portfolio returns selected by the safety-first model are more stable. Compare Table 4 and 5, we find that the average return of portfolios selected by the enhanced safety-first model in 2008 is even better than that in 2013-2014. Meanwhile, the difference in rates of mean return in this period is much smaller than during the financial crisis period.
5.6 Conclusion

In this paper, we enhance the safety-first model with standard deviation constraint and derive an analytic formula by filtering the returns with GH skewed t distribution and OGARCH. The solution is also given for classical mean-variance model in terms of parameters in GH skewed t distribution and OGARCH model. Then we compare the performances of the optimal portfolio selected by Mean-Variance, Mean-CVaR and enhanced safety-first models in 2008 financial crisis and stable period (2013-2014). The efficient frontier is also presented. It shows that Mean-CVaR model gives the highest mean return in the post-crisis period, while the enhanced safety-first model outperforms the other two models during the financial crisis period.
<table>
<thead>
<tr>
<th>Model</th>
<th>$\nu(\lambda)$</th>
<th>μ</th>
<th>γ</th>
<th>Σ</th>
<th>log Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH Skewed t</td>
<td>6.20</td>
<td>$[0.33\ 0.07\ 0.21\ 0.27]$</td>
<td>$[-0.30\ -0.07\ -0.20\ -0.27]$</td>
<td>$\begin{bmatrix}1.84 & -0.16 & 0.33 & 1.15 \ -0.16 & 0.96 & 0.11 & 0.28 \ 0.33 & 0.11 & 1.58 & 0.13 \ 1.15 & 0.28 & 0.13 & 1.41 \end{bmatrix}$</td>
<td>-15897.77</td>
</tr>
<tr>
<td>Student t</td>
<td>6.03</td>
<td>$[0.08\ 0.01\ 0.05\ 0.05]$</td>
<td>$[0\ 0\ 0\ 0]$</td>
<td>$\begin{bmatrix}1.89 & -0.16 & 0.36 & 1.19 \ -0.16 & 0.97 & 0.11 & 0.28 \ 0.36 & 0.11 & 1.61 & 0.15 \ 1.19 & 0.28 & 0.15 & 1.45 \end{bmatrix}$</td>
<td>-15917.59</td>
</tr>
<tr>
<td>NIG</td>
<td>-0.5</td>
<td>$[0.34\ 0.07\ 0.21\ 0.27]$</td>
<td>$[-0.32\ -0.072\ -0.19\ -0.27]$</td>
<td>$\begin{bmatrix}1.82 & -0.16 & 0.33 & 1.14 \ -0.16 & 0.95 & 0.11 & 0.28 \ 0.33 & 0.11 & 1.57 & 0.13 \ 1.14 & 0.28 & 0.13 & 1.41 \end{bmatrix}$</td>
<td>-15907.40</td>
</tr>
<tr>
<td>GH</td>
<td>2</td>
<td>$[0.15\ 0.026\ 0.08\ 0.11]$</td>
<td>$[-0.13\ -0.03\ -0.07\ -0.11]$</td>
<td>$\begin{bmatrix}1.88 & -0.19 & 0.35 & 1.20 \ -0.15 & 0.94 & 0.11 & 0.29 \ 0.35 & 0.11 & 1.58 & 0.15 \ 1.20 & 0.29 & 0.15 & 1.48 \end{bmatrix}$</td>
<td>-15935.91</td>
</tr>
<tr>
<td>Variance Gamma</td>
<td>2.59</td>
<td>$[0.35\ 0.07\ 0.18\ 0.27]$</td>
<td>$[-0.33\ -0.07\ -0.17\ -0.27]$</td>
<td>$\begin{bmatrix}1.79 & -0.16 & 0.32 & 1.13 \ -0.16 & 0.93 & 0.10 & 0.27 \ 0.32 & 0.10 & 1.54 & 0.13 \ 1.13 & 0.27 & 0.13 & 1.41 \end{bmatrix}$</td>
<td>-15932.95</td>
</tr>
<tr>
<td>Gaussian</td>
<td></td>
<td>$[0.021\ -0.002\ 0.012\ 0.002]$</td>
<td></td>
<td>$\begin{bmatrix}1.93 & -0.13 & 0.36 & 1.28 \ -0.13 & 0.90 & 0.10 & 0.30 \ 0.36 & 0.10 & 1.58 & 0.16 \ 1.28 & 0.30 & 0.16 & 1.48 \end{bmatrix}$</td>
<td>-16448.49</td>
</tr>
</tbody>
</table>

Table 5.3: Estimated parameters
Table 5.4: Statistics of realized portfolio returns for the out-of-sample period. average portfolio return (Mean), standard deviation (St. Dev), worst-case return (Min) are in percentages.

<table>
<thead>
<tr>
<th></th>
<th>CVAR(0.95)</th>
<th>Mean-Variance</th>
<th>Safety-first</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0</td>
<td>0.038</td>
<td>0.071</td>
</tr>
<tr>
<td>St. Dev</td>
<td>0.61</td>
<td>0.53</td>
<td>0.22</td>
</tr>
<tr>
<td>5% Quantile</td>
<td>-0.68</td>
<td>-0.46</td>
<td>-0.39</td>
</tr>
<tr>
<td>Min</td>
<td>-3.63</td>
<td>-3.10</td>
<td>-0.46</td>
</tr>
<tr>
<td>Max</td>
<td>0.47</td>
<td>0.50</td>
<td>0.44</td>
</tr>
<tr>
<td>Sharpe Ratio</td>
<td>0</td>
<td>0.072</td>
<td>0.323</td>
</tr>
</tbody>
</table>

Table 5.5: Statistics of realized portfolio returns for the out-of-sample period. mean, standard deviation (St. Dev), worst-case return (Min) are in percentages.

<table>
<thead>
<tr>
<th></th>
<th>CVAR(0.95)</th>
<th>Mean-Variance</th>
<th>Safety-first</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.046</td>
<td>0.044</td>
<td>0.033</td>
</tr>
<tr>
<td>St. Dev</td>
<td>0.29</td>
<td>0.31</td>
<td>0.10</td>
</tr>
<tr>
<td>5% Quantile</td>
<td>-0.35</td>
<td>-0.39</td>
<td>-0.11</td>
</tr>
<tr>
<td>Min</td>
<td>-0.56</td>
<td>-0.56</td>
<td>-0.17</td>
</tr>
<tr>
<td>Max</td>
<td>1.03</td>
<td>1.03</td>
<td>0.27</td>
</tr>
<tr>
<td>Sharpe Ratio</td>
<td>0.16</td>
<td>0.14</td>
<td>0.037</td>
</tr>
</tbody>
</table>

C. Alexander. A primer on the orthogonal garch model. *manuscript ISMA Centre, University of Reading, UK*, 2000.

BIBLIOGRAPHY

List of Publications

- Chapter 4 of this thesis is published in the journal of Omega, with the reference of "C, Luo, L. Seco, and L. Wu. "Portfolio Optimization in Hedge Funds by OGARCH and Markov Switching Model." Omega (2015), 34-39".

- Chapter 3 of this thesis is accepted to IEEE Systems Journal.