May

27

Monday, July 12, 2021

1:00 p.m. (sharp)

PhD Candidate: Artane Siad

Supervisor: Arul Shankar

Thesis title: Monogenic Fields with Odd Class Number

***

We prove an upper bound on the average number of 2-torsion elements in the class group monogenised fields of any degree $n \ge 3$, and, conditional on a widely expected tail estimate, compute this average exactly. As an application, we show that there are infinitely many number fields with odd class number in any even degree and signature. This completes a line of results on class number parity going back to Gauss.

A copy of the thesis can be found here: thesis v3

## no comment as of now