*Everyone is welcome to attend. Refreshments will be served in the Math Lounge before the exam.*

Thursday, June 13, 2019

11:10 a.m.

BA6183

PhD Candidate: Francis Bischoff

Supervisor: Marco Gualtieri

Thesis title: Morita Equivalence and Generalized Kahler Geometry

***

Generalized Kahler (GK) geometry is a generalization of Kahler geometry, which arises in the study of super-symmetric sigma models in physics. In this thesis, we solve the problem of determining the underlying degrees of freedom for the class of GK structures of symplectic type. This is achieved by giving a reformulation of the geometry whereby it is represented by a pair of holomorphic Poisson structures, a holomorphic symplectic Morita equivalence relating them, and a Lagrangian brane inside of the Morita equivalence.

We apply this reformulation to solve the longstanding problem of representing the metric of a GK structure in terms of a real-valued potential function. This generalizes the situation in Kahler geometry, where the metric can be expressed in terms of the partial derivatives of a function. This result relies on the fact that the metric of a GK structure corresponds to a Lagrangian brane, which can be represented via the method of generating functions. We then apply this result to give new constructions of GK structures, including examples on toric surfaces.

Next, we study the Picard group of a holomorphic Poisson structure, and explore its relationship to GK geometry. We then apply our results to the deformation theory of GK structures, and explain how a GK metric can be deformed by flowing the Lagrangian brane along a Hamiltonian vector field. Finally, we prove a normal form result, which says that locally, a GK structure of symplectic type is determined by a holomorphic Poisson structure and a time-dependent real-valued function, via a Hamiltonian flow construction.

A copy of the thesis can be found here: ut-thesis